working through compile bugs
This commit is contained in:
@@ -2,8 +2,7 @@
|
|||||||
|
|
||||||
namespace genetic {
|
namespace genetic {
|
||||||
|
|
||||||
template <class T> struct ReadonlySpan;
|
template <class T> struct Array;
|
||||||
template <class T> struct Span;
|
|
||||||
template <class T> struct Stats;
|
template <class T> struct Stats;
|
||||||
template <class T> struct Strategy;
|
template <class T> struct Strategy;
|
||||||
|
|
||||||
@@ -16,7 +15,8 @@ template <class T> struct Strategy {
|
|||||||
// before accessing/locking the work queue again.
|
// before accessing/locking the work queue again.
|
||||||
int num_cells; // Size of the population pool
|
int num_cells; // Size of the population pool
|
||||||
int num_generations; // Number of times (epochs) to run the algorithm
|
int num_generations; // Number of times (epochs) to run the algorithm
|
||||||
bool test_all; // Sets whether or not every cell is tested every generation
|
bool test_all; // Sets whether or not every cell's fitness is evaluated every
|
||||||
|
// generation
|
||||||
float test_chance; // Chance to test any given cell's fitness. Relevant only
|
float test_chance; // Chance to test any given cell's fitness. Relevant only
|
||||||
// if test_all is false.
|
// if test_all is false.
|
||||||
bool enable_crossover; // Cells that score well in the evaluation stage
|
bool enable_crossover; // Cells that score well in the evaluation stage
|
||||||
@@ -25,11 +25,17 @@ template <class T> struct Strategy {
|
|||||||
float crossover_mutation_chance; // Chance to mutate a child cell
|
float crossover_mutation_chance; // Chance to mutate a child cell
|
||||||
int crossover_parent_num; // Number of unique high-scoring parents in a
|
int crossover_parent_num; // Number of unique high-scoring parents in a
|
||||||
// crossover call.
|
// crossover call.
|
||||||
int crossover_children_num; // Number of children to expect the user to
|
int crossover_parent_stride; // Number of parents to skip over when moving to
|
||||||
// produce in the crossover function.
|
// the next set of parents. A stride of 1 would
|
||||||
bool enable_mutation; // Cells may be mutated
|
// produce maximum overlap because the set of
|
||||||
// before fitness evaluation
|
// parents would only change by one every
|
||||||
float mutation_chance; // Chance to mutate cells before fitness evaluation
|
// crossover.
|
||||||
|
int crossover_children_num; // Number of children to expect the user to
|
||||||
|
// produce in the crossover function.
|
||||||
|
bool enable_mutation; // Cells may be mutated
|
||||||
|
// before fitness evaluation
|
||||||
|
float mutation_chance; // Chance for any given cell to be mutated cells during
|
||||||
|
// the mutation
|
||||||
uint64_t rand_seed;
|
uint64_t rand_seed;
|
||||||
bool higher_fitness_is_better; // Sets whether or not to consider higher
|
bool higher_fitness_is_better; // Sets whether or not to consider higher
|
||||||
// fitness values better or worse. Set this to
|
// fitness values better or worse. Set this to
|
||||||
@@ -38,16 +44,16 @@ template <class T> struct Strategy {
|
|||||||
// User defined functions
|
// User defined functions
|
||||||
T (*make_default_cell)();
|
T (*make_default_cell)();
|
||||||
void (*mutate)(T &cell_to_modify);
|
void (*mutate)(T &cell_to_modify);
|
||||||
void (*crossover)(const Span<T *> parents, const Span<T *> out_children);
|
void (*crossover)(const Array<T *> parents, const Array<T *> out_children);
|
||||||
float (*fitness)(const T &cell);
|
float (*fitness)(const T &cell);
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class T> struct Stats {
|
template <class T> struct Stats {
|
||||||
std::vector<T> best_cell;
|
std::vector<T> best_cell;
|
||||||
std::vector<float> average_fitness;
|
std::vector<float> best_cell_fitness;
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class T> struct Span {
|
template <class T> struct Array {
|
||||||
T *_data;
|
T *_data;
|
||||||
int len;
|
int len;
|
||||||
|
|
||||||
|
|||||||
180
src/genetic.cpp
180
src/genetic.cpp
@@ -1,9 +1,14 @@
|
|||||||
#include "genetic.h"
|
#include <algorithm>
|
||||||
#include "pthread.h"
|
#include <cstdint>
|
||||||
|
#include <cstdlib>
|
||||||
#include <optional>
|
#include <optional>
|
||||||
#include <variant>
|
#include <variant>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
|
#include "genetic.h"
|
||||||
|
#include "pthread.h"
|
||||||
|
#include "rand.h"
|
||||||
|
|
||||||
#define NUM_QUEUE_RETRIES 10
|
#define NUM_QUEUE_RETRIES 10
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
@@ -19,23 +24,27 @@ template <class... Ts> overload(Ts...) -> overload<Ts...>;
|
|||||||
|
|
||||||
namespace genetic {
|
namespace genetic {
|
||||||
|
|
||||||
template <class T> struct CellEntry {
|
template <class T> struct cell_entry {
|
||||||
float score;
|
float score;
|
||||||
T *cell;
|
T *cell;
|
||||||
bool stale;
|
bool stale;
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class T> struct CrossoverJob {
|
template <class T> struct crossover_job {
|
||||||
Span<CellEntry<T> *> &parents;
|
Array<cell_entry<T> *> &parents;
|
||||||
Span<CellEntry<T> *> &children_out;
|
Array<cell_entry<T> *> &children_out;
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class T> struct FitnessJob {
|
template <class T> struct fitness_job {
|
||||||
CellEntry<T> *cell_entry;
|
cell_entry<T> *cell_entry;
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class T> struct WorkQueue {
|
template <class T> struct mutate_job {
|
||||||
variant<CrossoverJob<T>, FitnessJob<T>> *jobs;
|
cell_entry<T> *cell_entry;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <class T> struct work_queue {
|
||||||
|
variant<crossover_job<T>, fitness_job<T>, mutate_job<T>> *jobs;
|
||||||
int len;
|
int len;
|
||||||
int read_i;
|
int read_i;
|
||||||
int write_i;
|
int write_i;
|
||||||
@@ -49,9 +58,9 @@ template <class T> struct WorkQueue {
|
|||||||
pthread_cond_t jobs_available_cond;
|
pthread_cond_t jobs_available_cond;
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class T> WorkQueue<T> make_work_queue(int len) {
|
template <class T> work_queue<T> make_work_queue(int len) {
|
||||||
return {.jobs = (variant<FitnessJob<T>, CrossoverJob<T>> *)malloc(
|
return {.jobs = (variant<fitness_job<T>, crossover_job<T>> *)malloc(
|
||||||
sizeof(variant<FitnessJob<T>, CrossoverJob<T>>) * len),
|
sizeof(variant<fitness_job<T>, crossover_job<T>>) * len),
|
||||||
.len = len,
|
.len = len,
|
||||||
.read_i = 0,
|
.read_i = 0,
|
||||||
.write_i = 0,
|
.write_i = 0,
|
||||||
@@ -63,19 +72,19 @@ template <class T> WorkQueue<T> make_work_queue(int len) {
|
|||||||
.jobs_available_cond = PTHREAD_COND_INITIALIZER};
|
.jobs_available_cond = PTHREAD_COND_INITIALIZER};
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class T> struct JobBatch {
|
template <class T> struct job_batch {
|
||||||
ReadonlySpan<variant<CrossoverJob<T>, FitnessJob<T>>> jobs;
|
Array<variant<crossover_job<T>, fitness_job<T>>> jobs;
|
||||||
bool gen_complete;
|
bool gen_complete;
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class T>
|
template <class T>
|
||||||
optional<JobBatch<T>> get_job_batch(WorkQueue<T> &queue, int batch_size,
|
optional<job_batch<T>> get_job_batch(work_queue<T> &queue, int batch_size,
|
||||||
bool *stop_flag) {
|
bool *stop_flag) {
|
||||||
while (true) {
|
while (true) {
|
||||||
for (int i = 0; i < NUM_QUEUE_RETRIES; i++) {
|
for (int i = 0; i < NUM_QUEUE_RETRIES; i++) {
|
||||||
if (queue.read_i < queue.write_i &&
|
if (queue.read_i < queue.write_i &&
|
||||||
pthread_mutex_trylock(&queue.data_mutex)) {
|
pthread_mutex_trylock(&queue.data_mutex)) {
|
||||||
JobBatch<T> res;
|
job_batch<T> res;
|
||||||
res.jobs._data = &queue._jobs[queue.read_i];
|
res.jobs._data = &queue._jobs[queue.read_i];
|
||||||
int span_size = min(batch_size, queue.write_i - queue.read_i);
|
int span_size = min(batch_size, queue.write_i - queue.read_i);
|
||||||
res.jobs.len = span_size;
|
res.jobs.len = span_size;
|
||||||
@@ -94,27 +103,41 @@ optional<JobBatch<T>> get_job_batch(WorkQueue<T> &queue, int batch_size,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class T> struct WorkerThreadArgs {
|
template <class T> struct worker_thread_args {
|
||||||
Strategy<T> &strat;
|
Strategy<T> &strat;
|
||||||
WorkQueue<T> &queue;
|
work_queue<T> &queue;
|
||||||
bool *stop_flag;
|
bool *stop_flag;
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class T> void do_crossover_job(CrossoverJob<T> cj) {}
|
|
||||||
|
|
||||||
template <class T> void *worker(void *args) {
|
template <class T> void *worker(void *args) {
|
||||||
WorkerThreadArgs<T> *work_args = (WorkerThreadArgs<T> *)args;
|
worker_thread_args<T> *work_args = (worker_thread_args<T> *)args;
|
||||||
Strategy<T> &strat = work_args->strat;
|
Strategy<T> &strat = work_args->strat;
|
||||||
WorkQueue<T> &queue = work_args->queue;
|
work_queue<T> &queue = work_args->queue;
|
||||||
bool *stop_flag = work_args->stop_flag;
|
bool *stop_flag = work_args->stop_flag;
|
||||||
|
|
||||||
auto JobDispatcher = overload{
|
auto job_dispatcher = overload{
|
||||||
[strat](FitnessJob<T> fj) {
|
[strat](mutate_job<T> mj) {
|
||||||
fj.cell_entry->result_out = strat.fitness(*(fj.cell_entry->cell));
|
strat.mutate(*mj.cell_entry->cell);
|
||||||
fj.cell_entry->stale = true;
|
mj.cell_entry->stale = true;
|
||||||
},
|
},
|
||||||
[strat](CrossoverJob<T> cj) {
|
[strat](fitness_job<T> fj) {
|
||||||
strat.crossover(cj.parents, cj.children_out);
|
fj.cell_entry->score = strat.fitness(*fj.cell_entry->cell);
|
||||||
|
fj.cell_entry->stale = false;
|
||||||
|
},
|
||||||
|
[strat](crossover_job<T> cj) {
|
||||||
|
Array<T *> parent_cells, child_cells;
|
||||||
|
parent_cells = {(T **)malloc(sizeof(T *) * cj.parents.len),
|
||||||
|
cj.parents.len};
|
||||||
|
child_cells = {(T **)malloc(sizeof(T *) * cj.children_out.len),
|
||||||
|
cj.children_out.len};
|
||||||
|
for (int i = 0; i < cj.parents.len; i++) {
|
||||||
|
parent_cells[i] = cj.parents[i].cell;
|
||||||
|
}
|
||||||
|
for (int i = 0; i < cj.children_out.len; i++) {
|
||||||
|
child_cells[i] = cj.children_out[i].cell;
|
||||||
|
cj.children_out[i].stale = true;
|
||||||
|
}
|
||||||
|
strat.crossover(parent_cells, child_cells);
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
@@ -125,7 +148,7 @@ template <class T> void *worker(void *args) {
|
|||||||
|
|
||||||
// Do the actual work
|
// Do the actual work
|
||||||
for (int i = 0; i < batch->jobs.len; i++) {
|
for (int i = 0; i < batch->jobs.len; i++) {
|
||||||
visit(JobDispatcher, batch->jobs[i]);
|
visit(job_dispatcher, batch->jobs[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (batch->gen_complete) {
|
if (batch->gen_complete) {
|
||||||
@@ -136,20 +159,24 @@ template <class T> void *worker(void *args) {
|
|||||||
|
|
||||||
template <class T> Stats<T> run(Strategy<T> strat) {
|
template <class T> Stats<T> run(Strategy<T> strat) {
|
||||||
Stats<T> stats;
|
Stats<T> stats;
|
||||||
WorkQueue<T> work_queue = make_work_queue<T>(strat.num_cells);
|
|
||||||
|
|
||||||
|
// The work queue is what all the worker threads will checking
|
||||||
|
// for jobs
|
||||||
|
work_queue<T> queue = make_work_queue<T>(strat.num_cells);
|
||||||
|
|
||||||
|
// The actual cells. Woo!
|
||||||
T cells[strat.num_cells];
|
T cells[strat.num_cells];
|
||||||
|
|
||||||
// Using a vector so I can use the make_heap, push_heap, etc.
|
// Using a vector so I can use the make_heap, push_heap, etc.
|
||||||
vector<CellEntry<T>> cell_queue;
|
vector<cell_entry<T>> cell_queue;
|
||||||
for (int i = 0; i < strat.num_cells; i++) {
|
for (int i = 0; i < strat.num_cells; i++) {
|
||||||
cells[i] = strat.make_default_cell();
|
cells[i] = strat.make_default_cell();
|
||||||
cell_queue.push_back({0, &cells[i], true});
|
cell_queue.push_back({0, &cells[i], true});
|
||||||
}
|
}
|
||||||
|
|
||||||
bool stop_flag = false;
|
bool stop_flag = false;
|
||||||
WorkerThreadArgs<T> args = {
|
worker_thread_args<T> args = {
|
||||||
.strat = strat, .queue = work_queue, .stop_flag = &stop_flag};
|
.strat = strat, .queue = queue, .stop_flag = &stop_flag};
|
||||||
|
|
||||||
// spawn worker threads
|
// spawn worker threads
|
||||||
pthread_t threads[strat.num_threads];
|
pthread_t threads[strat.num_threads];
|
||||||
@@ -157,28 +184,95 @@ template <class T> Stats<T> run(Strategy<T> strat) {
|
|||||||
pthread_create(&threads[i], NULL, worker<T>, (void *)args);
|
pthread_create(&threads[i], NULL, worker<T>, (void *)args);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < strat.num_generations; i++) {
|
uint64_t rand_state = strat.rand_seed;
|
||||||
// generate fitness jobs
|
|
||||||
if (strat.test_all) {
|
|
||||||
|
|
||||||
} else {
|
for (int i = 0; i < strat.num_generations; i++) {
|
||||||
|
// Mutate some random cells in the population
|
||||||
|
for (int i = 0; i < cell_queue.size(); i++) {
|
||||||
|
if (abs(norm_rand(rand_state)) < strat.mutation_chance) {
|
||||||
|
queue.jobs[queue.write_i] = mutate_job<T>{&cell_queue[i]};
|
||||||
|
queue.write_i++;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
pthread_cond_broadcast(&queue.jobs_available_cond);
|
||||||
|
|
||||||
|
// Potential issue here where mutations aren't done computing and fitness
|
||||||
|
// jobs begin. maybe need to gate this.
|
||||||
|
|
||||||
|
// Generate fitness jobs
|
||||||
|
for (int i = 0; i < cell_queue.size(); i++) {
|
||||||
|
if (cell_queue[i].stale &&
|
||||||
|
(strat.test_all || abs(norm_rand(rand_state)) < strat.test_chance)) {
|
||||||
|
queue.jobs[queue.write_i] = fitness_job<T>{&cell_queue[i]};
|
||||||
|
queue.write_i++;
|
||||||
|
}
|
||||||
|
pthread_cond_broadcast(&queue.jobs_available_cond);
|
||||||
|
}
|
||||||
|
queue.done_writing = true;
|
||||||
|
|
||||||
// wait for fitness jobs to complete
|
// wait for fitness jobs to complete
|
||||||
// sort cells on performance
|
pthread_mutex_lock(&queue.gen_complete_mutex);
|
||||||
|
|
||||||
|
// Before going to sleep, do a quick check to see if the fitness jobs are
|
||||||
|
// already complete.
|
||||||
|
pthread_mutex_lock(&queue.data_mutex);
|
||||||
|
bool already_complete = queue.read_i != queue.write_i;
|
||||||
|
pthread_mutex_unlock(&queue.data_mutex);
|
||||||
|
if (already_complete) {
|
||||||
|
pthread_mutex_unlock(&queue.gen_complete_mutex);
|
||||||
|
} else {
|
||||||
|
pthread_cond_wait(&queue.gen_complete_cond, &queue.gen_complete_mutex);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sort cells on performance
|
||||||
|
std::sort(cell_queue.begin(), cell_queue.end(),
|
||||||
|
[strat](cell_entry<T> a, cell_entry<T> b) {
|
||||||
|
return strat.higher_fitness_is_better ? a > b : a < b;
|
||||||
|
});
|
||||||
|
|
||||||
|
printf("Top Score: %f\n", cell_queue[0].score);
|
||||||
|
|
||||||
|
if (!strat.enable_crossover)
|
||||||
|
continue;
|
||||||
|
|
||||||
// generate crossover jobs
|
// generate crossover jobs
|
||||||
|
// dear god. forgive me father
|
||||||
|
queue.write_i = 0;
|
||||||
|
queue.read_i = 0;
|
||||||
|
int count = 0;
|
||||||
|
int n_par = strat.crossover_parent_num;
|
||||||
|
int n_child = strat.crossover_children_num;
|
||||||
|
int child_i = cell_queue.size() - 1;
|
||||||
|
int par_i = 0;
|
||||||
|
while (child_i - par_i <= n_par + n_child) {
|
||||||
|
Array<cell_entry<T> *> parents = {
|
||||||
|
(cell_entry<T> **)malloc(sizeof(cell_entry<T> *) * n_par), n_par};
|
||||||
|
Array<cell_entry<T> *> children = {
|
||||||
|
(cell_entry<T> **)malloc(sizeof(cell_entry<T> *) * n_child), n_child};
|
||||||
|
|
||||||
|
for (; par_i < par_i + n_par; par_i++) {
|
||||||
|
parents[i] = cell_queue[par_i];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (; child_i > child_i - n_child; child_i--) {
|
||||||
|
children[i] = cell_queue[child_i];
|
||||||
|
}
|
||||||
|
|
||||||
|
queue.jobs[queue.write_i] = crossover_job<T>{parents, children};
|
||||||
|
par_i += strat.crossover_parent_stride;
|
||||||
|
child_i += strat.crossover_children_stride;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// stop worker threads
|
// stop worker threads
|
||||||
stop_flag = true;
|
stop_flag = true;
|
||||||
pthread_cond_broadcast(work_queue.jobs_available_cond);
|
pthread_cond_broadcast(&queue.jobs_available_cond);
|
||||||
for (int i = 0; i < strat.num_threads; i++) {
|
for (int i = 0; i < strat.num_threads; i++) {
|
||||||
pthread_join(threads[i], NULL);
|
pthread_join(threads[i], NULL);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class T> T &Span<T>::operator[](int i) {
|
template <class T> T &Array<T>::operator[](int i) {
|
||||||
assert(i >= 0 && i < len);
|
|
||||||
return _data[i];
|
return _data[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
174
src/main.cpp
174
src/main.cpp
@@ -1,133 +1,81 @@
|
|||||||
#include <algorithm>
|
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
|
#include <cstdint>
|
||||||
#include <cstdlib>
|
#include <cstdlib>
|
||||||
#include <iostream>
|
#include "genetic.h"
|
||||||
#include <vector>
|
#include "rand.h"
|
||||||
|
|
||||||
#define MUTATION_CHANCE 1.0
|
using namespace genetic;
|
||||||
|
|
||||||
float norm_rand() { return (float)rand() / RAND_MAX; }
|
const int len = 10;
|
||||||
|
const float max_float = 9999.9f;
|
||||||
|
static uint64_t seed = 12;
|
||||||
|
static float num_mutate_chance = 0.5;
|
||||||
|
static int num_parents = 2;
|
||||||
|
static int num_children = 2;
|
||||||
|
|
||||||
enum class ConstraintType {
|
|
||||||
PRODUCT = 0,
|
|
||||||
SUM = 1,
|
|
||||||
INDEX_EQ = 2,
|
|
||||||
};
|
|
||||||
|
|
||||||
struct Constraint {
|
static int target_sum = 200;
|
||||||
ConstraintType type;
|
static int target_product = 300;
|
||||||
int optional_i;
|
|
||||||
float value;
|
|
||||||
};
|
|
||||||
static std::vector<Constraint> constraints;
|
|
||||||
|
|
||||||
struct Cell {
|
Array<float> make_new_arr() {
|
||||||
int n;
|
Array<float> arr = { (float*)malloc(sizeof(float)*len), len };
|
||||||
float *params;
|
for (int i = 0; i < arr.len; i++) {
|
||||||
};
|
arr[i] = norm_rand(seed) * max_float;
|
||||||
|
}
|
||||||
Cell make_cell(int num_params) {
|
return arr;
|
||||||
Cell res = {num_params, (float *)malloc(num_params * sizeof(float))};
|
|
||||||
for (int i = 0; i < num_params; i++) {
|
|
||||||
res.params[i] = 0;
|
|
||||||
}
|
|
||||||
return res;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
float get_cell_err(const Cell &a) {
|
void mutate(Array<float> &arr_to_mutate) {
|
||||||
float total_diff = 0;
|
for (int i = 0; i < len; i++) {
|
||||||
for (auto c : constraints) {
|
if (norm_rand(seed) < num_mutate_chance) {
|
||||||
switch (c.type) {
|
arr_to_mutate[i] = norm_rand(seed) * max_float;
|
||||||
case ConstraintType::SUM: {
|
}
|
||||||
float sum = 0;
|
|
||||||
for (int i = 0; i < a.n; i++) {
|
|
||||||
sum += a.params[i];
|
|
||||||
}
|
|
||||||
total_diff += abs(c.value - sum);
|
|
||||||
break;
|
|
||||||
}
|
}
|
||||||
case ConstraintType::PRODUCT: {
|
|
||||||
float prod = 1;
|
|
||||||
for (int i = 0; i < a.n; i++) {
|
|
||||||
prod *= a.params[i];
|
|
||||||
}
|
|
||||||
total_diff += abs(c.value - prod);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
case ConstraintType::INDEX_EQ: {
|
|
||||||
assert(c.optional_i < a.n);
|
|
||||||
total_diff += abs(c.value - a.params[c.optional_i]);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return total_diff;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
bool operator<(const Cell &a, const Cell &b) {
|
void crossover(const Array<Array<float>*> parents, const Array<Array<float> *> out_children) {
|
||||||
assert(a.n == b.n);
|
for (int i = 0; i < len; i++) {
|
||||||
return get_cell_err(a) < get_cell_err(b);
|
(*out_children._data[0])[i] = i < len/2 ? (*parents._data[0])[i] : (*parents._data[1])[i];
|
||||||
|
(*out_children._data[1])[i] = i < len/2 ? (*parents._data[1])[i] : (*parents._data[0])[i];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void combine_cells(const Cell &a, const Cell &b, Cell *child) {
|
// norm_rand can go negative. fix in genetic.cpp
|
||||||
bool a_first = norm_rand() > 0.5f;
|
// child stride doesn't make sense. Should always skip over child num
|
||||||
for (int i = 0; i < a.n; i++) {
|
|
||||||
float offset = norm_rand() * 10;
|
float fitness(const Array<float> &cell) {
|
||||||
float roll = norm_rand();
|
float sum = 0;
|
||||||
if (a_first) {
|
float product = 1;
|
||||||
child->params[i] = (i < a.n / 2 ? a.params[i] : b.params[i]) +
|
for (int i = 0; i < cell.len; i++) {
|
||||||
(roll > 0.5 ? offset : -offset);
|
sum += cell._data[i];
|
||||||
} else {
|
product *= cell._data[i];
|
||||||
child->params[i] = (i < a.n / 2 ? b.params[i] : a.params[i]) +
|
|
||||||
(roll > 0.5 ? offset : -offset);
|
|
||||||
}
|
}
|
||||||
}
|
return abs(sum - target_sum) + abs(product - target_product);
|
||||||
float r = norm_rand();
|
|
||||||
child->params[(int)r * (a.n - 1)] = r * 100.0;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char **argv) {
|
int main(int argc, char **argv) {
|
||||||
int num_params, num_cells, num_generations, num_constraints = 0;
|
Strategy<Array<float>> strat {
|
||||||
std::cin >> num_params >> num_cells >> num_generations >> num_constraints;
|
.num_threads = 1,
|
||||||
|
.batch_size = 1,
|
||||||
|
.num_cells = 10,
|
||||||
|
.num_generations = 10,
|
||||||
|
.test_all = true,
|
||||||
|
.test_chance = 0.0, // doesn't matter
|
||||||
|
.enable_crossover = true,
|
||||||
|
.enable_crossover_mutation = true,
|
||||||
|
.crossover_mutation_chance = 0.6f,
|
||||||
|
.crossover_parent_num = 2,
|
||||||
|
.crossover_parent_stride = 1,
|
||||||
|
.crossover_children_num = 2,
|
||||||
|
.enable_mutation = true,
|
||||||
|
.mutation_chance = 0.8,
|
||||||
|
.rand_seed = seed,
|
||||||
|
.higher_fitness_is_better = false,
|
||||||
|
.make_default_cell=make_new_arr,
|
||||||
|
.mutate=mutate,
|
||||||
|
.crossover=crossover,
|
||||||
|
.fitness=fitness
|
||||||
|
};
|
||||||
|
|
||||||
std::cout << num_params << " " << num_cells << " " << num_generations << " "
|
auto res = run(strat);
|
||||||
<< num_constraints << std::endl;
|
|
||||||
|
|
||||||
for (int i = 0; i < num_constraints; i++) {
|
|
||||||
int type_in, optional_i = 0;
|
|
||||||
float value;
|
|
||||||
std::cin >> type_in >> value;
|
|
||||||
ConstraintType type = static_cast<ConstraintType>(type_in);
|
|
||||||
if (type == ConstraintType::INDEX_EQ) {
|
|
||||||
std::cin >> optional_i;
|
|
||||||
}
|
|
||||||
constraints.push_back({type, optional_i, value});
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<Cell> cells;
|
|
||||||
for (int i = 0; i < num_cells; i++) {
|
|
||||||
cells.push_back(make_cell(num_params));
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < num_generations; i++) {
|
|
||||||
std::sort(cells.begin(), cells.end());
|
|
||||||
for (int j = 0; j < num_cells / 2; j++) {
|
|
||||||
combine_cells(cells[j], cells[j + 1], &cells[num_cells / 2 + j]);
|
|
||||||
}
|
|
||||||
if (i % 1000 == 0) {
|
|
||||||
std::cout << i << "\t" << get_cell_err(cells[0]) << std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
std::cout << "Final Answer: ";
|
|
||||||
float sum = 0;
|
|
||||||
float product = 1;
|
|
||||||
for (int i = 0; i < cells[0].n; i++) {
|
|
||||||
std::cout << cells[0].params[i] << " ";
|
|
||||||
sum += cells[0].params[i];
|
|
||||||
product *= cells[0].params[i];
|
|
||||||
}
|
|
||||||
std::cout << std::endl;
|
|
||||||
|
|
||||||
std::cout << "Sum: " << sum << std::endl;
|
|
||||||
std::cout << "Product: " << product << std::endl;
|
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user