Running. Only tested single thread version. Stats are looking nice. Needs more validation
This commit is contained in:
@@ -1,8 +1,11 @@
|
||||
// raddbg 0.9.21 project file
|
||||
|
||||
recent_file: path: "inc/genetic.h"
|
||||
recent_file: path: "d:/os/obj/amd64fre/minkernel/crts/ucrt/src/appcrt/misc/mt/objfre/amd64/minkernel/crts/ucrt/src/appcrt/misc/invalid_parameter.cpp"
|
||||
recent_file: path: "inc/sync.h"
|
||||
recent_file: path: "src/main.cpp"
|
||||
recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.44.35207/include/vector"
|
||||
recent_file: path: "d:/os/obj/amd64fre/minkernel/crts/ucrt/src/appcrt/misc/mt/objfre/amd64/minkernel/crts/ucrt/src/appcrt/misc/invalid_parameter.cpp"
|
||||
recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.44.35207/include/xmemory"
|
||||
recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/include/algorithm"
|
||||
recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/include/xutility"
|
||||
target:
|
||||
|
||||
@@ -2,8 +2,8 @@
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
|
||||
#include "util.h"
|
||||
#include "sync.h"
|
||||
#include "rand.h"
|
||||
|
||||
@@ -11,7 +11,6 @@ using namespace sync;
|
||||
|
||||
namespace genetic {
|
||||
|
||||
template <class T> struct Array;
|
||||
template <class T> struct Stats;
|
||||
template <class T> struct Strategy;
|
||||
struct CellTracker;
|
||||
@@ -22,12 +21,15 @@ template <class T> struct Strategy {
|
||||
// Number of worker threads that will be evaluating cell fitness
|
||||
int num_threads;
|
||||
|
||||
float stats_print_period;
|
||||
// Period of print statements (in seconds)
|
||||
float stats_print_period_s;
|
||||
|
||||
// Size of the population pool per sim thread
|
||||
int num_cells_per_thread;
|
||||
|
||||
// Number of times (epochs) to run the algorithm
|
||||
int num_generations;
|
||||
|
||||
int batch_size; // Number of cells a worker thread tries to work on in a row
|
||||
// before accessing/locking the work queue again.
|
||||
int num_cells_per_thread; // Size of the population pool per sim thread
|
||||
int num_generations; // Number of times (epochs) to run the algorithm
|
||||
bool test_all; // Sets whether or not every cell's fitness is evaluated every
|
||||
// generation
|
||||
float test_chance; // Chance to test any given cell's fitness. Relevant only
|
||||
@@ -60,21 +62,17 @@ template <class T> struct Strategy {
|
||||
};
|
||||
|
||||
template<class T> struct Stats {
|
||||
std::vector<T> best_cell;
|
||||
std::vector<float> best_cell_fitness;
|
||||
DynArray<T> best_cells;
|
||||
DynArray<float> best_cell_fitness;
|
||||
int gen;
|
||||
bool done;
|
||||
TimeSpan start, end;
|
||||
|
||||
TimeSpan total_crossover_time;
|
||||
int total_crossovers;
|
||||
|
||||
TimeSpan total_mutate_time;
|
||||
int total_mutates;
|
||||
|
||||
TimeSpan total_fitness_time;
|
||||
int total_evaluations;
|
||||
|
||||
TimeSpan total_sorting_time;
|
||||
int total_sorts;
|
||||
|
||||
@@ -86,26 +84,12 @@ struct CellTracker {
|
||||
int cellid;
|
||||
};
|
||||
|
||||
template <class T> struct Array {
|
||||
T *data;
|
||||
int len;
|
||||
|
||||
T &operator[](int i) { return data[i]; }
|
||||
};
|
||||
|
||||
template <class T> Array<T> make_array(int len) {
|
||||
return {
|
||||
.data = (T*)malloc(sizeof(T)*len),
|
||||
.len = len
|
||||
};
|
||||
}
|
||||
|
||||
template<class T>
|
||||
struct WorkerThreadArgs {
|
||||
Strategy<T> strat;
|
||||
Array<T> cells;
|
||||
Array<CellTracker> trackers;
|
||||
Stats<T> &stats;
|
||||
Stats<T> *stats;
|
||||
};
|
||||
|
||||
template<class T> T* _cellp(Array<T> cells, CellTracker tracker) { return &cells[tracker.cellid]; }
|
||||
@@ -116,7 +100,7 @@ template <class T> DWORD worker(LPVOID args) {
|
||||
Strategy<T> strat = worker_args->strat;
|
||||
Array<T> cells = worker_args->cells;
|
||||
Array<CellTracker> trackers = worker_args->trackers;
|
||||
Stats<T> &stats = worker_args->stats;
|
||||
Stats<T> &stats = *worker_args->stats;
|
||||
|
||||
// Prepare crossover operations as these will be the same every time except
|
||||
// for the exact cell pointers
|
||||
@@ -192,8 +176,8 @@ template <class T> DWORD worker(LPVOID args) {
|
||||
stats.total_sorting_time = stats.total_sorting_time + (now() - start);
|
||||
stats.total_sorts++;
|
||||
|
||||
stats.best_cell.push_back(cells[trackers[0].cellid]);
|
||||
stats.best_cell_fitness.push_back(trackers[0].score);
|
||||
append(stats.best_cells, cells[trackers[0].cellid]);
|
||||
append(stats.best_cell_fitness, trackers[0].score);
|
||||
stats.gen++;
|
||||
unlock(stats.m);
|
||||
}
|
||||
@@ -217,8 +201,21 @@ template <class T> T run(Strategy<T> strat) {
|
||||
|
||||
for (int i = 0; i < strat.num_threads; i++) {
|
||||
stats[i] = {
|
||||
.gen=0,
|
||||
.m=make_mutex()
|
||||
.best_cells=make_dynarray<T>(strat.num_generations),
|
||||
.best_cell_fitness=make_dynarray<float>(strat.num_generations),
|
||||
.gen=0,
|
||||
.done=false,
|
||||
.start=from_s(0),
|
||||
.end=from_s(0),
|
||||
.total_crossover_time=from_s(0),
|
||||
.total_crossovers=0,
|
||||
.total_mutate_time=from_s(0),
|
||||
.total_mutates=0,
|
||||
.total_fitness_time=from_s(0),
|
||||
.total_evaluations=0,
|
||||
.total_sorting_time=from_s(0),
|
||||
.total_sorts=0,
|
||||
.m=make_mutex()
|
||||
};
|
||||
Array<T> tcells = { &cells[i*strat.num_cells_per_thread], strat.num_cells_per_thread };
|
||||
Array<CellTracker> ttrackers = { &trackers[i*strat.num_cells_per_thread], strat.num_cells_per_thread };
|
||||
@@ -226,7 +223,7 @@ template <class T> T run(Strategy<T> strat) {
|
||||
args[i].strat=strat;
|
||||
args[i].cells=tcells;
|
||||
args[i].trackers=ttrackers;
|
||||
args[i].stats=stats[i];
|
||||
args[i].stats=&stats[i];
|
||||
|
||||
threads[i] = make_thread(worker<T>, &args[i]);
|
||||
}
|
||||
@@ -234,7 +231,7 @@ template <class T> T run(Strategy<T> strat) {
|
||||
// We are the stats thread
|
||||
bool complete = false;
|
||||
while (!complete) {
|
||||
sleep(from_s(strat.stats_print_period));
|
||||
sleep(from_s(strat.stats_print_period_s));
|
||||
|
||||
printf("**********************\n");
|
||||
float g_avg_crossover_time = 0;
|
||||
@@ -242,6 +239,7 @@ template <class T> T run(Strategy<T> strat) {
|
||||
float g_avg_fitness_time = 0;
|
||||
float g_avg_sorting_time = 0;
|
||||
float g_progress_per = 0;
|
||||
float g_best_fitness = strat.higher_fitness_is_better ? 0.0 : 999999999999999999.9;
|
||||
|
||||
complete = true;
|
||||
|
||||
@@ -259,13 +257,16 @@ template <class T> T run(Strategy<T> strat) {
|
||||
|
||||
float progress_per = static_cast<float>(stats[i].gen) / static_cast<float>(strat.num_generations) * 100;
|
||||
|
||||
float best_score = back(stats[i].best_cell_fitness);
|
||||
|
||||
g_avg_crossover_time += avg_crossover_time;
|
||||
g_avg_mutate_time += avg_mutate_time;
|
||||
g_avg_fitness_time += avg_fitness_time;
|
||||
g_avg_sorting_time += avg_sorting_time;
|
||||
g_progress_per += progress_per;
|
||||
g_best_fitness = strat.higher_fitness_is_better ? max(best_score, g_best_fitness) : min(best_score, g_best_fitness);
|
||||
|
||||
printf("THREAD %d, Progress %.1f%, Average Crossover Time/Cell %.5f (s), Average Mutate Time/Cell: %.5f (s), Average Fitness Time/Cell: %.5f (s), Average Sorting Time: %.5f (s)\n", i, progress_per, avg_crossover_time, avg_mutate_time, avg_fitness_time, avg_sorting_time);
|
||||
printf("THREAD %d, Progress %.1f\%, Top Score %.5e, Cross %.5f (s), Mutate: %.5f (s), Fitness: %.5f (s), Sorting: %.5f (s)\n", i, progress_per, best_score, avg_crossover_time, avg_mutate_time, avg_fitness_time, avg_sorting_time);
|
||||
unlock(stats[i].m);
|
||||
}
|
||||
|
||||
@@ -275,18 +276,18 @@ template <class T> T run(Strategy<T> strat) {
|
||||
g_avg_sorting_time /= stats.len;
|
||||
g_progress_per /= stats.len;
|
||||
|
||||
printf("OVERALL, Progress %.1f%, Average Crossover Time/Cell %.5f (s), Average Mutate Time/Cell: %.5f (s), Average Fitness Time/Cell: %.5f (s), Average Sorting Time: %.5f (s)\n", g_progress_per, g_avg_crossover_time, g_avg_mutate_time, g_avg_fitness_time, g_avg_sorting_time);
|
||||
printf("OVERALL, Progress %.1f\%, Top Score: %.5e, Cross %.5f (s), Mutate: %.5f (s), Fitness: %.5f (s), Sorting: %.5f (s)\n", g_progress_per, g_best_fitness, g_avg_crossover_time, g_avg_mutate_time, g_avg_fitness_time, g_avg_sorting_time);
|
||||
|
||||
if (complete) break;
|
||||
}
|
||||
|
||||
T best_cell;
|
||||
// TODO: bad
|
||||
float best_score = strat.higher_fitness_is_better ? 999999999999999999.9 : 0.0;
|
||||
float best_score = strat.higher_fitness_is_better ? 0.0 : 999999999999999999.9;
|
||||
for (int i = 0; i < stats.len; i++) {
|
||||
float score = stats[i].best_cell_fitness.back();
|
||||
float score = back(stats[i].best_cell_fitness);
|
||||
if (strat.higher_fitness_is_better ? score > best_score : score < best_score) {
|
||||
best_cell = stats[i].best_cell.back();
|
||||
best_cell = back(stats[i].best_cells);
|
||||
best_score = score;
|
||||
}
|
||||
}
|
||||
|
||||
53
inc/util.h
Normal file
53
inc/util.h
Normal file
@@ -0,0 +1,53 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstring>
|
||||
#define min(A, B) ((A < B) ? (A) : (B))
|
||||
#define max(A, B) ((A > B) ? (A) : (B))
|
||||
|
||||
template <class T> struct Array {
|
||||
T *data;
|
||||
int len;
|
||||
|
||||
T &operator[](int i) { return data[i]; }
|
||||
};
|
||||
|
||||
|
||||
template <class T> Array<T> make_array(int len) {
|
||||
return {
|
||||
.data=(T*)malloc(sizeof(T)*len),
|
||||
.len=len
|
||||
};
|
||||
}
|
||||
|
||||
template <class T> struct DynArray {
|
||||
T* _data;
|
||||
int end;
|
||||
int cap;
|
||||
|
||||
T &operator[](int i) { return _data[i]; }
|
||||
};
|
||||
|
||||
template <class T> DynArray<T> make_dynarray(int cap) {
|
||||
return {
|
||||
._data=(T*)malloc(sizeof(T)*cap),
|
||||
.end=0,
|
||||
.cap=cap
|
||||
};
|
||||
}
|
||||
|
||||
template <class T> void resize(DynArray<T> &a, int new_cap) {
|
||||
T* old = a._data;
|
||||
a._data = (T*)malloc(sizeof(T)*new_cap);
|
||||
memcpy(a._data, old, min(sizeof(T)*a.end, sizeof(T)*new_cap));
|
||||
a.cap = new_cap;
|
||||
free(old);
|
||||
}
|
||||
|
||||
template <class T> void append(DynArray<T> &a, T el) {
|
||||
if (a.end == a.cap) resize(a, min(1, a.cap*2));
|
||||
a[a.end++] = el;
|
||||
}
|
||||
|
||||
template <class T> T& back(DynArray<T> &a) { return a._data[a.end-1]; }
|
||||
template <class T> T& front(DynArray<T> &a) { return a._data[0]; }
|
||||
|
||||
10
src/main.cpp
10
src/main.cpp
@@ -3,6 +3,7 @@
|
||||
#include <cstdlib>
|
||||
#include "genetic.h"
|
||||
#include "rand.h"
|
||||
#include "sync.h"
|
||||
|
||||
using namespace genetic;
|
||||
|
||||
@@ -54,11 +55,11 @@ float fitness(const Array<float> &cell) {
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
int num_gens = 2000;
|
||||
int num_gens = 1000;
|
||||
Strategy<Array<float>> strat {
|
||||
.num_threads = 1,
|
||||
.batch_size = 1,
|
||||
.num_cells_per_thread = 100000,
|
||||
.stats_print_period_s = 2,
|
||||
.num_cells_per_thread = 10000,
|
||||
.num_generations = num_gens,
|
||||
.test_all = true,
|
||||
.test_chance = 0.0, // doesn't matter
|
||||
@@ -76,7 +77,9 @@ int main(int argc, char **argv) {
|
||||
.fitness=fitness
|
||||
};
|
||||
|
||||
TimeSpan start = now();
|
||||
auto best_cell = run(strat);
|
||||
TimeSpan runtime = now() - start;
|
||||
|
||||
float sum = 0;
|
||||
float product = 1;
|
||||
@@ -90,4 +93,5 @@ int main(int argc, char **argv) {
|
||||
printf("\n");
|
||||
printf("Final Sum: %f\n", sum);
|
||||
printf("Final Product: %f\n", product);
|
||||
printf("Execution Time %d (min) %f (s)\n", static_cast<int>(sync::to_min(runtime)), fmod(to_s(runtime), 60) );
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user