first running multithreaded version. nasty deadlock bug exists. Realizing that Perhaps I should just have each thread running a completely separate situation. Why synchronize when you don't need to?

This commit is contained in:
2025-09-08 02:23:44 -05:00
parent bd9820dd68
commit 5b53b7ff85
4 changed files with 222 additions and 11 deletions

View File

@@ -1,6 +1,7 @@
// raddbg 0.9.21 project file // raddbg 0.9.21 project file
recent_file: path: "inc/genetic.h" recent_file: path: "inc/genetic.h"
recent_file: path: "inc/sync.h"
recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/include/algorithm" recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/include/algorithm"
recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/include/xutility" recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.42.34433/include/xutility"
recent_file: path: "src/main.cpp" recent_file: path: "src/main.cpp"

View File

@@ -8,6 +8,7 @@
#include "rand.h" #include "rand.h"
using namespace sync; using namespace sync;
using namespace std;
namespace genetic { namespace genetic {
@@ -83,6 +84,66 @@ template <class T> Array<T> make_array(int len) {
}; };
} }
template<class T>
struct MutateJob {
T* cell;
};
template<class T>
struct CrossoverJob {
Array<T*> parents;
Array<T*> children;
};
template<class T>
struct FitnessJob {
T* cell;
CellTracker* track;
};
enum class JobType {
MUTATE,
CROSSOVER,
FITNESS
};
template<class T>
union Job {
MutateJob<T> m;
CrossoverJob<T> c;
FitnessJob<T> f;
};
// Yes. I am aware of variant
// For some reason I like this better
template<class T>
struct TaggedJob {
Job<T> data;
JobType type;
};
template<class T>
struct WorkQueue {
Array<TaggedJob<T>> jobs;
int read_i, write_i, batch_size;
bool done_writing, work_complete, stop; // These catch some edge conditions
Mutex m;
ConditionVar done;
ConditionVar jobs_ready;
};
template<class T>
struct WorkerThreadArgs {
WorkQueue<T> &q;
Strategy<T> &s;
};
template<class T> WorkQueue<T> make_work_queue(int len, int batch_size);
template<class T> bool tryget_job_batch(WorkQueue<T> &q, int len, Array<TaggedJob<T>>* out_batch, bool* out_batch_is_end);
template<class T>
DWORD worker(LPVOID args);
template <class T> Stats<T> run(Strategy<T> strat) { template <class T> Stats<T> run(Strategy<T> strat) {
Stats<T> stats; Stats<T> stats;
@@ -97,17 +158,42 @@ template <class T> Stats<T> run(Strategy<T> strat) {
Array<CellTracker> trackers = make_array<CellTracker>(strat.num_cells); Array<CellTracker> trackers = make_array<CellTracker>(strat.num_cells);
for (int i = 0; i < trackers.len; i++) trackers[i] = { .score=0, .cellid=i }; for (int i = 0; i < trackers.len; i++) trackers[i] = { .score=0, .cellid=i };
// Create work queue
// Worst case size is every cell mutated, crossed, and evaluated...? Not quite, but 3x should be upper bound
WorkQueue<T> q = make_work_queue<T>(3*strat.num_cells, strat.batch_size);
WorkerThreadArgs<T> args = {q, strat};
// Create worker threads
Thread *threads = (Thread*)malloc(sizeof(Thread*)*strat.num_threads);
for (int i = 0; i < strat.num_threads; i++) {
threads[i] = make_thread(worker<T>, &args);
}
stats.setup_time = now() - start_setup; stats.setup_time = now() - start_setup;
// *********** ALGORITHM ************ // *********** ALGORITHM ************
TimeSpan start_algo = now(); TimeSpan start_algo = now();
for (int gen = 0; gen < strat.num_generations; gen++) { for (int gen = 0; gen < strat.num_generations; gen++) {
// Reset work queue
lock(q.m);
q.read_i = 0;
q.write_i = 0;
q.work_complete = false;
q.done_writing = false;
unlock(q.m);
// 1. mutate // 1. mutate
for (int i = 0; i < trackers.len; i++) { for (int i = 0; i < trackers.len; i++) {
if (abs(norm_rand(strat.rand_seed)) < strat.mutation_chance) { if (abs(norm_rand(strat.rand_seed)) < strat.mutation_chance) {
strat.mutate(cells[trackers[i].cellid]); MutateJob<T> mj = {&cells[trackers[i].cellid]};
TaggedJob<T> job;
job.data.m = mj;
job.type=JobType::MUTATE;
q.jobs[q.write_i++] = job;
} }
} }
wake_all(q.jobs_ready); // There are available jobs for the worker threads!
// 2. crossover // 2. crossover
if (strat.enable_crossover) { if (strat.enable_crossover) {
int npar = strat.crossover_parent_num; int npar = strat.crossover_parent_num;
@@ -115,9 +201,11 @@ template <class T> Stats<T> run(Strategy<T> strat) {
int parent_end = npar; int parent_end = npar;
int child_begin = trackers.len-nchild; int child_begin = trackers.len-nchild;
while (parent_end <= child_begin) {
// TODO: Variable size arrays please. This is rediculous.
Array<T*> parents = make_array<T*>(npar); Array<T*> parents = make_array<T*>(npar);
Array<T*> children = make_array<T*>(nchild); Array<T*> children = make_array<T*>(nchild);
while (parent_end <= child_begin) {
// Get pointers to all the parent cells // Get pointers to all the parent cells
for (int i = parent_end-npar; i < parent_end; i++) { for (int i = parent_end-npar; i < parent_end; i++) {
parents[i - (parent_end-npar)] = &cells[trackers[i].cellid]; parents[i - (parent_end-npar)] = &cells[trackers[i].cellid];
@@ -127,25 +215,50 @@ template <class T> Stats<T> run(Strategy<T> strat) {
for (int i = child_begin; i < child_begin+nchild; i++) { for (int i = child_begin; i < child_begin+nchild; i++) {
children[i-child_begin] = &cells[trackers[i].cellid]; children[i-child_begin] = &cells[trackers[i].cellid];
} }
strat.crossover(parents, children); CrossoverJob<T> cj = {parents, children};
TaggedJob<T> job;
job.data.c=cj;
job.type=JobType::CROSSOVER;
q.jobs[q.write_i++] = job;
parent_end += strat.crossover_parent_stride; parent_end += strat.crossover_parent_stride;
child_begin -= nchild; child_begin -= nchild;
} }
free(parents.data); wake_all(q.jobs_ready); // There are available jobs for the worker threads!
free(children.data);
} }
// 3. evaluate // 3. evaluate
if (strat.test_all) { if (strat.test_all) {
for (int i = 0; i < trackers.len; i++) { for (int i = 0; i < trackers.len; i++) {
trackers[i].score = strat.fitness(cells[trackers[i].cellid]); FitnessJob<T> fj = {&cells[trackers[i].cellid], &trackers[i]};
TaggedJob<T> job;
job.data.f=fj;
job.type=JobType::FITNESS;
if (i == trackers.len-1) lock(q.m);
q.jobs[q.write_i++] = job;
if (i == trackers.len-1) { q.done_writing = true; unlock(q.m); }
} }
} else { } else {
lock(q.m);
for (int i = 0; i < trackers.len; i++) { for (int i = 0; i < trackers.len; i++) {
if (abs(norm_rand(strat.rand_seed)) < strat.test_chance) { if (abs(norm_rand(strat.rand_seed)) < strat.test_chance) {
trackers[i].score = strat.fitness(cells[trackers[i].cellid]); FitnessJob<T> fj = {&cells[trackers[i].cellid], &trackers[i]};
TaggedJob<T> job;
job.data.f=fj;
job.type=JobType::FITNESS;
q.jobs[q.write_i++] = job;
} }
} }
q.done_writing = true;
unlock(q.m);
} }
wake_all(q.jobs_ready);
// Wait until the work is finished
lock(q.m);
if (!q.work_complete)
wait(q.done, q.m, infinite_ts);
unlock(q.m);
// 4. sort // 4. sort
std::sort(&trackers[0], &trackers[trackers.len-1], [strat](CellTracker &a, CellTracker &b){ return strat.higher_fitness_is_better ? a.score > b.score : a.score < b.score; }); std::sort(&trackers[0], &trackers[trackers.len-1], [strat](CellTracker &a, CellTracker &b){ return strat.higher_fitness_is_better ? a.score > b.score : a.score < b.score; });
@@ -153,8 +266,105 @@ template <class T> Stats<T> run(Strategy<T> strat) {
stats.best_cell.push_back(cells[trackers[0].cellid]); stats.best_cell.push_back(cells[trackers[0].cellid]);
stats.best_cell_fitness.push_back(trackers[0].score); stats.best_cell_fitness.push_back(trackers[0].score);
} }
q.stop = true;
wake_all(q.jobs_ready);
// TODO: join all threads
// TODO: There's some data freeing that should really be done here
stats.run_time = now() - start_algo; stats.run_time = now() - start_algo;
return stats; return stats;
} }
template<class T> WorkQueue<T> make_work_queue(int len, int batch_size) {
return {
.jobs=make_array<TaggedJob<T>>(len),
.read_i=0,
.write_i=0,
.batch_size=batch_size,
.done_writing=false,
.work_complete=false,
.m=make_mutex(),
.done=make_condition_var(),
.jobs_ready=make_condition_var()
};
}
template<class T> bool tryget_job_batch(WorkQueue<T> &q, Array<TaggedJob<T>>* out_batch, bool* out_batch_is_end) {
lock(q.m);
if (q.stop) {
unlock(q.m);
return false;
}
// Keep waiting till jobs are available
while (q.read_i >= q.write_i) {
wait(q.jobs_ready, q.m, infinite_ts);
if (q.stop) {
unlock(q.m);
return false;
}
}
// Yay! Let's grab some jobs to do
// If the batch we're about to grab moves read_i to write_i and the producer
// is done writing, we should let our callee know it's handling this gen's last
// batch know that way it sets work_complete and signals done.
*out_batch_is_end = q.done_writing && q.read_i + q.batch_size >= q.write_i;
out_batch->data = &q.jobs[q.read_i];
out_batch->len = min(q.batch_size, q.write_i - q.read_i);
q.read_i += q.batch_size;
unlock(q.m);
return true;
}
template<class T>
void work_batch(Array<TaggedJob<T>> batch, Strategy<T> &s) {
for (int i = 0; i < batch.len; i++) {
switch (batch[i].type) {
case JobType::MUTATE: {
MutateJob<T> mj = batch[i].data.m;
s.mutate(*mj.cell);
} break;
case JobType::CROSSOVER: {
CrossoverJob<T> cj = batch[i].data.c;
s.crossover(cj.parents, cj.children);
} break;
case JobType::FITNESS: {
FitnessJob<T> fj = batch[i].data.f;
fj.track->score = s.fitness(*fj.cell);
} break;
default: {
assert(false);
}
}
}
}
template<class T>
DWORD worker(LPVOID args) {
WorkerThreadArgs<T>* wa = static_cast<WorkerThreadArgs<T>*>(args);
WorkQueue<T> &q = wa->q;
Strategy<T> &s = wa->s;
// These are written by tryget_job_batch
bool batch_is_end;
Array<TaggedJob<T>> batch;
while (tryget_job_batch(q, &batch, &batch_is_end)) {
work_batch(batch, s);
if (batch_is_end) {
lock(q.m);
q.work_complete = true;
wake_one(q.done);
unlock(q.m);
}
}
return NULL;
}
} // namespace genetic } // namespace genetic

View File

@@ -56,8 +56,8 @@ float fitness(const Array<float> &cell) {
int main(int argc, char **argv) { int main(int argc, char **argv) {
int num_gens = 2000; int num_gens = 2000;
Strategy<Array<float>> strat { Strategy<Array<float>> strat {
.num_threads = 1, .num_threads = 15,
.batch_size = 1, .batch_size = 1000,
.num_cells = 100000, .num_cells = 100000,
.num_generations = num_gens, .num_generations = num_gens,
.test_all = true, .test_all = true,