Rewrite. Currently segfaults

This commit is contained in:
2025-09-07 16:42:06 -05:00
parent 905ca1e43a
commit bed933055e
5 changed files with 131 additions and 327 deletions

View File

@@ -1,63 +1,145 @@
#pragma once
#include <algorithm>
#include <cstdlib>
#include <vector> #include <vector>
#include "sync.h"
#include "rand.h"
namespace genetic { namespace genetic {
template <class T> struct Array; template <class T> struct Array;
template <class T> struct Stats; template <class T> struct Stats;
template <class T> struct Strategy; template <class T> struct Strategy;
struct CellTracker;
template <class T> Stats<T> run(Strategy<T>); template <class T> Stats<T> run(Strategy<T>);
template <class T> struct Strategy { template <class T> struct Strategy {
int num_threads; // Number of worker threads that will be evaluating cell // Number of worker threads that will be evaluating cell fitness
// fitness. int num_threads;
int batch_size; // Number of cells a worker thread tries to work on in a row
// before accessing/locking the work queue again.
int num_cells; // Size of the population pool
int num_generations; // Number of times (epochs) to run the algorithm
bool test_all; // Sets whether or not every cell's fitness is evaluated every
// generation
float test_chance; // Chance to test any given cell's fitness. Relevant only
// if test_all is false.
bool enable_crossover; // Cells that score well in the evaluation stage
// produce children that replace low-scoring cells
bool enable_crossover_mutation; // Mutations can occur after crossover
float crossover_mutation_chance; // Chance to mutate a child cell
int crossover_parent_num; // Number of unique high-scoring parents in a
// crossover call.
int crossover_parent_stride; // Number of parents to skip over when moving to
// the next set of parents. A stride of 1 would
// produce maximum overlap because the set of
// parents would only change by one every
// crossover.
int crossover_children_num; // Number of children to expect the user to
// produce in the crossover function.
bool enable_mutation; // Cells may be mutated
// before fitness evaluation
float mutation_chance; // Chance for any given cell to be mutated cells during
// the mutation
uint64_t rand_seed;
bool higher_fitness_is_better; // Sets whether or not to consider higher
// fitness values better or worse. Set this to
// false if fitness is an error function.
// User defined functions int batch_size; // Number of cells a worker thread tries to work on in a row
T (*make_default_cell)(); // before accessing/locking the work queue again.
void (*mutate)(T &cell_to_modify); int num_cells; // Size of the population pool
void (*crossover)(const Array<T *> parents, const Array<T *> out_children); int num_generations; // Number of times (epochs) to run the algorithm
float (*fitness)(const T &cell); bool test_all; // Sets whether or not every cell's fitness is evaluated every
// generation
float test_chance; // Chance to test any given cell's fitness. Relevant only
// if test_all is false.
bool enable_crossover; // Cells that score well in the evaluation stage
// produce children that replace low-scoring cells
int crossover_parent_num; // Number of unique high-scoring parents in a
// crossover call.
int crossover_parent_stride; // Number of parents to skip over when moving to
// the next set of parents. A stride of 1 would
// produce maximum overlap because the set of
// parents would only change by one every
// crossover.
int crossover_children_num; // Number of children to expect the user to
// produce in the crossover function.
bool enable_mutation; // Cells may be mutated
// before fitness evaluation
float mutation_chance; // Chance for any given cell to be mutated cells during
// the mutation
uint64_t rand_seed;
bool higher_fitness_is_better; // Sets whether or not to consider higher
// fitness values better or worse. Set this to
// false if fitness is an error function.
// User defined functions
T (*make_default_cell)();
void (*mutate)(T &cell_to_modify);
void (*crossover)(const Array<T *> parents, const Array<T *> out_children);
float (*fitness)(const T &cell);
}; };
template <class T> struct Stats { template<class T> struct Stats {
std::vector<T> best_cell; std::vector<T> best_cell;
std::vector<float> best_cell_fitness; std::vector<float> best_cell_fitness;
};
struct CellTracker {
float score;
int cellid;
}; };
template <class T> struct Array { template <class T> struct Array {
T *_data; T *data;
int len; int len;
T &operator[](int i); T &operator[](int i) { return data[i]; }
}; };
template <class T> Array<T> make_array(int len) {
return {
.data = (T*)malloc(sizeof(T)*len),
.len = len
};
}
template <class T> Stats<T> run(Strategy<T> strat) {
// Create cells
Array<T> cells = make_array<T>(strat.num_cells);
for (int i = 0; i < cells.len; i++) cells[i] = strat.make_default_cell();
// Create cell trackers
Array<CellTracker> trackers = make_array<CellTracker>(strat.num_cells);
for (int i = 0; i < trackers.len; i++) trackers[i] = { .score=0, .cellid=i };
// Init stat tracker
Stats<T> stats;
// Run the algorithm
for (int gen = 0; gen < strat.num_generations; gen++) {
// 1. mutate
for (int i = 0; i < trackers.len; i++) {
if (abs(norm_rand(strat.rand_seed)) < strat.mutation_chance) {
strat.mutate(cells[trackers[i].cellid]);
}
}
// 2. crossover
if (strat.enable_crossover) {
int parent_end = strat.crossover_parent_num;
int child_begin = trackers.len-strat.crossover_children_num;
while (parent_end <= child_begin) {
// Get pointers to all the parent cells
Array<T*> parents = make_array<T*>(strat.crossover_parent_num);
for (int i = parent_end-strat.crossover_parent_num; i < parent_end; i++) {
parents[i] = &cells[trackers[i].cellid];
}
// Get pointers to all the child cells (these will be overwritten)
Array<T*> children = make_array<T*>(strat.crossover_children_num);
for (int i = child_begin; i < child_begin+strat.crossover_children_num; i++) {
children[i] = &cells[trackers[i].cellid];
}
strat.crossover(parents, children);
parent_end += strat.crossover_parent_stride;
child_begin -= strat.crossover_children_num;
}
}
// 3. evaluate
if (strat.test_all) {
for (int i = 0; i < trackers.len; i++) {
trackers[i].score = strat.fitness(cells[trackers[i].cellid]);
}
} else {
for (int i = 0; i < trackers.len; i++) {
if (abs(norm_rand(strat.rand_seed)) < strat.test_chance) {
trackers[i].score = strat.fitness(cells[trackers[i].cellid]);
}
}
}
// 4. sort
std::sort(&trackers[0], &trackers[trackers.len-1], [strat](CellTracker &a, CellTracker &b){ return strat.higher_fitness_is_better ? a.score < b.score : a.score > b.score; });
printf("Gen: %d, Best Score: %f\n", gen, trackers[0].score);
stats.best_cell.push_back(cells[trackers[0].cellid]);
stats.best_cell_fitness.push_back(trackers[0].score);
}
return stats;
}
} // namespace genetic } // namespace genetic

View File

@@ -1,3 +1,5 @@
#pragma once
// TODO: This file needs a serious audit // TODO: This file needs a serious audit
#include <cstdint> #include <cstdint>

View File

@@ -188,3 +188,4 @@ double to_hours(TimeSpan &sp) {
#endif #endif
} // namespace sync } // namespace sync
//

View File

@@ -1,279 +0,0 @@
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <optional>
#include <variant>
#include <vector>
#include "sync.h"
#include "genetic.h"
#include "rand.h"
#define NUM_QUEUE_RETRIES 10
using namespace std;
// std::visit/std::variant overload pattern
// See:
// https://www.modernescpp.com/index.php/visiting-a-std-variant-with-the-overload-pattern/
// You don't have to understand this, just use it :)
template <typename... Ts> struct overload : Ts... {
using Ts::operator()...;
};
template <class... Ts> overload(Ts...) -> overload<Ts...>;
namespace genetic {
template <class T> struct cell_entry {
float score;
T *cell;
bool stale;
};
template <class T> struct crossover_job {
Array<cell_entry<T> *> &parents;
Array<cell_entry<T> *> &children_out;
};
template <class T> struct fitness_job {
cell_entry<T> *cell_entry;
};
template <class T> struct mutate_job {
cell_entry<T> *cell_entry;
};
template <class T> struct work_queue {
variant<crossover_job<T>, fitness_job<T>, mutate_job<T>> *jobs;
int len;
int read_i;
int write_i;
bool done_writing;
pthread_mutex_t data_mutex;
pthread_mutex_t gen_complete_mutex;
pthread_mutex_t jobs_available_mutex;
pthread_cond_t gen_complete_cond;
pthread_cond_t jobs_available_cond;
};
template <class T> work_queue<T> make_work_queue(int len) {
return {.jobs = (variant<fitness_job<T>, crossover_job<T>> *)malloc(
sizeof(variant<fitness_job<T>, crossover_job<T>>) * len),
.len = len,
.read_i = 0,
.write_i = 0,
.done_writing = false,
.data_mutex = PTHREAD_MUTEX_INITIALIZER,
.gen_complete_mutex = PTHREAD_MUTEX_INITIALIZER,
.jobs_available_mutex = PTHREAD_MUTEX_INITIALIZER,
.gen_complete_cond = PTHREAD_COND_INITIALIZER,
.jobs_available_cond = PTHREAD_COND_INITIALIZER};
}
template <class T> struct job_batch {
Array<variant<crossover_job<T>, fitness_job<T>>> jobs;
bool gen_complete;
};
template <class T>
optional<job_batch<T>> get_job_batch(work_queue<T> &queue, int batch_size,
bool *stop_flag) {
while (true) {
for (int i = 0; i < NUM_QUEUE_RETRIES; i++) {
if (queue.read_i < queue.write_i &&
pthread_mutex_trylock(&queue.data_mutex)) {
job_batch<T> res;
res.jobs._data = &queue._jobs[queue.read_i];
int span_size = min(batch_size, queue.write_i - queue.read_i);
res.jobs.len = span_size;
queue.read_i += span_size;
res.gen_complete = queue.done_writing && queue.read_i == queue.write_i;
pthread_mutex_unlock(&queue.data_mutex);
return res;
}
}
pthread_mutex_lock(&queue.jobs_available_mutex);
pthread_cond_wait(queue.jobs_available_cond, &queue.jobs_available_mutex);
if (stop_flag)
return {};
}
}
template <class T> struct worker_thread_args {
Strategy<T> &strat;
work_queue<T> &queue;
bool *stop_flag;
};
template <class T> void *worker(void *args) {
worker_thread_args<T> *work_args = (worker_thread_args<T> *)args;
Strategy<T> &strat = work_args->strat;
work_queue<T> &queue = work_args->queue;
bool *stop_flag = work_args->stop_flag;
auto job_dispatcher = overload{
[strat](mutate_job<T> mj) {
strat.mutate(*mj.cell_entry->cell);
mj.cell_entry->stale = true;
},
[strat](fitness_job<T> fj) {
fj.cell_entry->score = strat.fitness(*fj.cell_entry->cell);
fj.cell_entry->stale = false;
},
[strat](crossover_job<T> cj) {
Array<T *> parent_cells, child_cells;
parent_cells = {(T **)malloc(sizeof(T *) * cj.parents.len),
cj.parents.len};
child_cells = {(T **)malloc(sizeof(T *) * cj.children_out.len),
cj.children_out.len};
for (int i = 0; i < cj.parents.len; i++) {
parent_cells[i] = cj.parents[i].cell;
}
for (int i = 0; i < cj.children_out.len; i++) {
child_cells[i] = cj.children_out[i].cell;
cj.children_out[i].stale = true;
}
strat.crossover(parent_cells, child_cells);
},
};
while (true) {
auto batch = get_job_batch(queue, strat.batch_size, stop_flag);
if (!batch || *stop_flag)
return NULL;
// Do the actual work
for (int i = 0; i < batch->jobs.len; i++) {
visit(job_dispatcher, batch->jobs[i]);
}
if (batch->gen_complete) {
pthread_cond_signal(&queue.gen_complete_cond, &queue.gen_complete_mutex);
}
}
}
template <class T> Stats<T> run(Strategy<T> strat) {
Stats<T> stats;
// The work queue is what all the worker threads will checking
// for jobs
work_queue<T> queue = make_work_queue<T>(strat.num_cells);
// The actual cells. Woo!
T cells[strat.num_cells];
// Using a vector so I can use the make_heap, push_heap, etc.
vector<cell_entry<T>> cell_queue;
for (int i = 0; i < strat.num_cells; i++) {
cells[i] = strat.make_default_cell();
cell_queue.push_back({0, &cells[i], true});
}
bool stop_flag = false;
worker_thread_args<T> args = {
.strat = strat, .queue = queue, .stop_flag = &stop_flag};
// spawn worker threads
pthread_t threads[strat.num_threads];
for (int i = 0; i < strat.num_threads; i++) {
pthread_create(&threads[i], NULL, worker<T>, (void *)args);
}
uint64_t rand_state = strat.rand_seed;
for (int i = 0; i < strat.num_generations; i++) {
// Mutate some random cells in the population
for (int i = 0; i < cell_queue.size(); i++) {
if (abs(norm_rand(rand_state)) < strat.mutation_chance) {
queue.jobs[queue.write_i] = mutate_job<T>{&cell_queue[i]};
queue.write_i++;
}
}
pthread_cond_broadcast(&queue.jobs_available_cond);
// Potential issue here where mutations aren't done computing and fitness
// jobs begin. maybe need to gate this.
// Generate fitness jobs
for (int i = 0; i < cell_queue.size(); i++) {
if (cell_queue[i].stale &&
(strat.test_all || abs(norm_rand(rand_state)) < strat.test_chance)) {
queue.jobs[queue.write_i] = fitness_job<T>{&cell_queue[i]};
queue.write_i++;
}
pthread_cond_broadcast(&queue.jobs_available_cond);
}
queue.done_writing = true;
// wait for fitness jobs to complete
pthread_mutex_lock(&queue.gen_complete_mutex);
// Before going to sleep, do a quick check to see if the fitness jobs are
// already complete.
pthread_mutex_lock(&queue.data_mutex);
bool already_complete = queue.read_i != queue.write_i;
pthread_mutex_unlock(&queue.data_mutex);
if (already_complete) {
pthread_mutex_unlock(&queue.gen_complete_mutex);
} else {
pthread_cond_wait(&queue.gen_complete_cond, &queue.gen_complete_mutex);
}
// Sort cells on performance
std::sort(cell_queue.begin(), cell_queue.end(),
[strat](cell_entry<T> a, cell_entry<T> b) {
return strat.higher_fitness_is_better ? a > b : a < b;
});
printf("Top Score: %f\n", cell_queue[0].score);
if (!strat.enable_crossover)
continue;
// generate crossover jobs
// dear god. forgive me father
queue.write_i = 0;
queue.read_i = 0;
int count = 0;
int n_par = strat.crossover_parent_num;
int n_child = strat.crossover_children_num;
int child_i = cell_queue.size() - 1;
int par_i = 0;
while (child_i - par_i <= n_par + n_child) {
Array<cell_entry<T> *> parents = {
(cell_entry<T> **)malloc(sizeof(cell_entry<T> *) * n_par), n_par};
Array<cell_entry<T> *> children = {
(cell_entry<T> **)malloc(sizeof(cell_entry<T> *) * n_child), n_child};
for (; par_i < par_i + n_par; par_i++) {
parents[i] = cell_queue[par_i];
}
for (; child_i > child_i - n_child; child_i--) {
children[i] = cell_queue[child_i];
}
queue.jobs[queue.write_i] = crossover_job<T>{parents, children};
par_i += strat.crossover_parent_stride;
child_i += strat.crossover_children_stride;
}
}
// stop worker threads
stop_flag = true;
pthread_cond_broadcast(&queue.jobs_available_cond);
for (int i = 0; i < strat.num_threads; i++) {
pthread_join(threads[i], NULL);
}
}
template <class T> T &Array<T>::operator[](int i) {
return _data[i];
}
} // namespace genetic

View File

@@ -35,8 +35,8 @@ void mutate(Array<float> &arr_to_mutate) {
void crossover(const Array<Array<float>*> parents, const Array<Array<float> *> out_children) { void crossover(const Array<Array<float>*> parents, const Array<Array<float> *> out_children) {
for (int i = 0; i < len; i++) { for (int i = 0; i < len; i++) {
(*out_children._data[0])[i] = i < len/2 ? (*parents._data[0])[i] : (*parents._data[1])[i]; (*out_children.data[0])[i] = i < len/2 ? (*parents.data[0])[i] : (*parents.data[1])[i];
(*out_children._data[1])[i] = i < len/2 ? (*parents._data[1])[i] : (*parents._data[0])[i]; (*out_children.data[1])[i] = i < len/2 ? (*parents.data[1])[i] : (*parents.data[0])[i];
} }
} }
@@ -47,8 +47,8 @@ float fitness(const Array<float> &cell) {
float sum = 0; float sum = 0;
float product = 1; float product = 1;
for (int i = 0; i < cell.len; i++) { for (int i = 0; i < cell.len; i++) {
sum += cell._data[i]; sum += cell.data[i];
product *= cell._data[i]; product *= cell.data[i];
} }
return abs(sum - target_sum) + abs(product - target_product); return abs(sum - target_sum) + abs(product - target_product);
} }
@@ -62,8 +62,6 @@ int main(int argc, char **argv) {
.test_all = true, .test_all = true,
.test_chance = 0.0, // doesn't matter .test_chance = 0.0, // doesn't matter
.enable_crossover = true, .enable_crossover = true,
.enable_crossover_mutation = true,
.crossover_mutation_chance = 0.6f,
.crossover_parent_num = 2, .crossover_parent_num = 2,
.crossover_parent_stride = 1, .crossover_parent_stride = 1,
.crossover_children_num = 2, .crossover_children_num = 2,