Rewrite. Currently segfaults
This commit is contained in:
166
inc/genetic.h
166
inc/genetic.h
@@ -1,63 +1,145 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
#include <cstdlib>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
|
#include "sync.h"
|
||||||
|
#include "rand.h"
|
||||||
|
|
||||||
namespace genetic {
|
namespace genetic {
|
||||||
|
|
||||||
template <class T> struct Array;
|
template <class T> struct Array;
|
||||||
template <class T> struct Stats;
|
template <class T> struct Stats;
|
||||||
template <class T> struct Strategy;
|
template <class T> struct Strategy;
|
||||||
|
struct CellTracker;
|
||||||
|
|
||||||
template <class T> Stats<T> run(Strategy<T>);
|
template <class T> Stats<T> run(Strategy<T>);
|
||||||
|
|
||||||
template <class T> struct Strategy {
|
template <class T> struct Strategy {
|
||||||
int num_threads; // Number of worker threads that will be evaluating cell
|
// Number of worker threads that will be evaluating cell fitness
|
||||||
// fitness.
|
int num_threads;
|
||||||
int batch_size; // Number of cells a worker thread tries to work on in a row
|
|
||||||
// before accessing/locking the work queue again.
|
|
||||||
int num_cells; // Size of the population pool
|
|
||||||
int num_generations; // Number of times (epochs) to run the algorithm
|
|
||||||
bool test_all; // Sets whether or not every cell's fitness is evaluated every
|
|
||||||
// generation
|
|
||||||
float test_chance; // Chance to test any given cell's fitness. Relevant only
|
|
||||||
// if test_all is false.
|
|
||||||
bool enable_crossover; // Cells that score well in the evaluation stage
|
|
||||||
// produce children that replace low-scoring cells
|
|
||||||
bool enable_crossover_mutation; // Mutations can occur after crossover
|
|
||||||
float crossover_mutation_chance; // Chance to mutate a child cell
|
|
||||||
int crossover_parent_num; // Number of unique high-scoring parents in a
|
|
||||||
// crossover call.
|
|
||||||
int crossover_parent_stride; // Number of parents to skip over when moving to
|
|
||||||
// the next set of parents. A stride of 1 would
|
|
||||||
// produce maximum overlap because the set of
|
|
||||||
// parents would only change by one every
|
|
||||||
// crossover.
|
|
||||||
int crossover_children_num; // Number of children to expect the user to
|
|
||||||
// produce in the crossover function.
|
|
||||||
bool enable_mutation; // Cells may be mutated
|
|
||||||
// before fitness evaluation
|
|
||||||
float mutation_chance; // Chance for any given cell to be mutated cells during
|
|
||||||
// the mutation
|
|
||||||
uint64_t rand_seed;
|
|
||||||
bool higher_fitness_is_better; // Sets whether or not to consider higher
|
|
||||||
// fitness values better or worse. Set this to
|
|
||||||
// false if fitness is an error function.
|
|
||||||
|
|
||||||
// User defined functions
|
int batch_size; // Number of cells a worker thread tries to work on in a row
|
||||||
T (*make_default_cell)();
|
// before accessing/locking the work queue again.
|
||||||
void (*mutate)(T &cell_to_modify);
|
int num_cells; // Size of the population pool
|
||||||
void (*crossover)(const Array<T *> parents, const Array<T *> out_children);
|
int num_generations; // Number of times (epochs) to run the algorithm
|
||||||
float (*fitness)(const T &cell);
|
bool test_all; // Sets whether or not every cell's fitness is evaluated every
|
||||||
|
// generation
|
||||||
|
float test_chance; // Chance to test any given cell's fitness. Relevant only
|
||||||
|
// if test_all is false.
|
||||||
|
bool enable_crossover; // Cells that score well in the evaluation stage
|
||||||
|
// produce children that replace low-scoring cells
|
||||||
|
int crossover_parent_num; // Number of unique high-scoring parents in a
|
||||||
|
// crossover call.
|
||||||
|
int crossover_parent_stride; // Number of parents to skip over when moving to
|
||||||
|
// the next set of parents. A stride of 1 would
|
||||||
|
// produce maximum overlap because the set of
|
||||||
|
// parents would only change by one every
|
||||||
|
// crossover.
|
||||||
|
int crossover_children_num; // Number of children to expect the user to
|
||||||
|
// produce in the crossover function.
|
||||||
|
bool enable_mutation; // Cells may be mutated
|
||||||
|
// before fitness evaluation
|
||||||
|
float mutation_chance; // Chance for any given cell to be mutated cells during
|
||||||
|
// the mutation
|
||||||
|
uint64_t rand_seed;
|
||||||
|
bool higher_fitness_is_better; // Sets whether or not to consider higher
|
||||||
|
// fitness values better or worse. Set this to
|
||||||
|
// false if fitness is an error function.
|
||||||
|
|
||||||
|
// User defined functions
|
||||||
|
T (*make_default_cell)();
|
||||||
|
void (*mutate)(T &cell_to_modify);
|
||||||
|
void (*crossover)(const Array<T *> parents, const Array<T *> out_children);
|
||||||
|
float (*fitness)(const T &cell);
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class T> struct Stats {
|
template<class T> struct Stats {
|
||||||
std::vector<T> best_cell;
|
std::vector<T> best_cell;
|
||||||
std::vector<float> best_cell_fitness;
|
std::vector<float> best_cell_fitness;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct CellTracker {
|
||||||
|
float score;
|
||||||
|
int cellid;
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class T> struct Array {
|
template <class T> struct Array {
|
||||||
T *_data;
|
T *data;
|
||||||
int len;
|
int len;
|
||||||
|
|
||||||
T &operator[](int i);
|
T &operator[](int i) { return data[i]; }
|
||||||
};
|
};
|
||||||
|
|
||||||
|
template <class T> Array<T> make_array(int len) {
|
||||||
|
return {
|
||||||
|
.data = (T*)malloc(sizeof(T)*len),
|
||||||
|
.len = len
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class T> Stats<T> run(Strategy<T> strat) {
|
||||||
|
// Create cells
|
||||||
|
Array<T> cells = make_array<T>(strat.num_cells);
|
||||||
|
for (int i = 0; i < cells.len; i++) cells[i] = strat.make_default_cell();
|
||||||
|
|
||||||
|
// Create cell trackers
|
||||||
|
Array<CellTracker> trackers = make_array<CellTracker>(strat.num_cells);
|
||||||
|
for (int i = 0; i < trackers.len; i++) trackers[i] = { .score=0, .cellid=i };
|
||||||
|
|
||||||
|
// Init stat tracker
|
||||||
|
Stats<T> stats;
|
||||||
|
|
||||||
|
// Run the algorithm
|
||||||
|
for (int gen = 0; gen < strat.num_generations; gen++) {
|
||||||
|
// 1. mutate
|
||||||
|
for (int i = 0; i < trackers.len; i++) {
|
||||||
|
if (abs(norm_rand(strat.rand_seed)) < strat.mutation_chance) {
|
||||||
|
strat.mutate(cells[trackers[i].cellid]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// 2. crossover
|
||||||
|
if (strat.enable_crossover) {
|
||||||
|
int parent_end = strat.crossover_parent_num;
|
||||||
|
int child_begin = trackers.len-strat.crossover_children_num;
|
||||||
|
while (parent_end <= child_begin) {
|
||||||
|
// Get pointers to all the parent cells
|
||||||
|
Array<T*> parents = make_array<T*>(strat.crossover_parent_num);
|
||||||
|
for (int i = parent_end-strat.crossover_parent_num; i < parent_end; i++) {
|
||||||
|
parents[i] = &cells[trackers[i].cellid];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Get pointers to all the child cells (these will be overwritten)
|
||||||
|
Array<T*> children = make_array<T*>(strat.crossover_children_num);
|
||||||
|
for (int i = child_begin; i < child_begin+strat.crossover_children_num; i++) {
|
||||||
|
children[i] = &cells[trackers[i].cellid];
|
||||||
|
}
|
||||||
|
strat.crossover(parents, children);
|
||||||
|
parent_end += strat.crossover_parent_stride;
|
||||||
|
child_begin -= strat.crossover_children_num;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// 3. evaluate
|
||||||
|
if (strat.test_all) {
|
||||||
|
for (int i = 0; i < trackers.len; i++) {
|
||||||
|
trackers[i].score = strat.fitness(cells[trackers[i].cellid]);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < trackers.len; i++) {
|
||||||
|
if (abs(norm_rand(strat.rand_seed)) < strat.test_chance) {
|
||||||
|
trackers[i].score = strat.fitness(cells[trackers[i].cellid]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// 4. sort
|
||||||
|
std::sort(&trackers[0], &trackers[trackers.len-1], [strat](CellTracker &a, CellTracker &b){ return strat.higher_fitness_is_better ? a.score < b.score : a.score > b.score; });
|
||||||
|
|
||||||
|
printf("Gen: %d, Best Score: %f\n", gen, trackers[0].score);
|
||||||
|
stats.best_cell.push_back(cells[trackers[0].cellid]);
|
||||||
|
stats.best_cell_fitness.push_back(trackers[0].score);
|
||||||
|
}
|
||||||
|
return stats;
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace genetic
|
} // namespace genetic
|
||||||
|
|||||||
@@ -1,3 +1,5 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
// TODO: This file needs a serious audit
|
// TODO: This file needs a serious audit
|
||||||
|
|
||||||
#include <cstdint>
|
#include <cstdint>
|
||||||
|
|||||||
@@ -188,3 +188,4 @@ double to_hours(TimeSpan &sp) {
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
} // namespace sync
|
} // namespace sync
|
||||||
|
//
|
||||||
|
|||||||
279
src/genetic.cpp
279
src/genetic.cpp
@@ -1,279 +0,0 @@
|
|||||||
#include <algorithm>
|
|
||||||
#include <cstdint>
|
|
||||||
#include <cstdlib>
|
|
||||||
#include <optional>
|
|
||||||
#include <variant>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
#include "sync.h"
|
|
||||||
#include "genetic.h"
|
|
||||||
#include "rand.h"
|
|
||||||
|
|
||||||
#define NUM_QUEUE_RETRIES 10
|
|
||||||
|
|
||||||
using namespace std;
|
|
||||||
|
|
||||||
// std::visit/std::variant overload pattern
|
|
||||||
// See:
|
|
||||||
// https://www.modernescpp.com/index.php/visiting-a-std-variant-with-the-overload-pattern/
|
|
||||||
// You don't have to understand this, just use it :)
|
|
||||||
template <typename... Ts> struct overload : Ts... {
|
|
||||||
using Ts::operator()...;
|
|
||||||
};
|
|
||||||
template <class... Ts> overload(Ts...) -> overload<Ts...>;
|
|
||||||
|
|
||||||
namespace genetic {
|
|
||||||
|
|
||||||
template <class T> struct cell_entry {
|
|
||||||
float score;
|
|
||||||
T *cell;
|
|
||||||
bool stale;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <class T> struct crossover_job {
|
|
||||||
Array<cell_entry<T> *> &parents;
|
|
||||||
Array<cell_entry<T> *> &children_out;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <class T> struct fitness_job {
|
|
||||||
cell_entry<T> *cell_entry;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <class T> struct mutate_job {
|
|
||||||
cell_entry<T> *cell_entry;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <class T> struct work_queue {
|
|
||||||
variant<crossover_job<T>, fitness_job<T>, mutate_job<T>> *jobs;
|
|
||||||
int len;
|
|
||||||
int read_i;
|
|
||||||
int write_i;
|
|
||||||
bool done_writing;
|
|
||||||
|
|
||||||
pthread_mutex_t data_mutex;
|
|
||||||
pthread_mutex_t gen_complete_mutex;
|
|
||||||
pthread_mutex_t jobs_available_mutex;
|
|
||||||
|
|
||||||
pthread_cond_t gen_complete_cond;
|
|
||||||
pthread_cond_t jobs_available_cond;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <class T> work_queue<T> make_work_queue(int len) {
|
|
||||||
return {.jobs = (variant<fitness_job<T>, crossover_job<T>> *)malloc(
|
|
||||||
sizeof(variant<fitness_job<T>, crossover_job<T>>) * len),
|
|
||||||
.len = len,
|
|
||||||
.read_i = 0,
|
|
||||||
.write_i = 0,
|
|
||||||
.done_writing = false,
|
|
||||||
.data_mutex = PTHREAD_MUTEX_INITIALIZER,
|
|
||||||
.gen_complete_mutex = PTHREAD_MUTEX_INITIALIZER,
|
|
||||||
.jobs_available_mutex = PTHREAD_MUTEX_INITIALIZER,
|
|
||||||
.gen_complete_cond = PTHREAD_COND_INITIALIZER,
|
|
||||||
.jobs_available_cond = PTHREAD_COND_INITIALIZER};
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class T> struct job_batch {
|
|
||||||
Array<variant<crossover_job<T>, fitness_job<T>>> jobs;
|
|
||||||
bool gen_complete;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <class T>
|
|
||||||
optional<job_batch<T>> get_job_batch(work_queue<T> &queue, int batch_size,
|
|
||||||
bool *stop_flag) {
|
|
||||||
while (true) {
|
|
||||||
for (int i = 0; i < NUM_QUEUE_RETRIES; i++) {
|
|
||||||
if (queue.read_i < queue.write_i &&
|
|
||||||
pthread_mutex_trylock(&queue.data_mutex)) {
|
|
||||||
job_batch<T> res;
|
|
||||||
res.jobs._data = &queue._jobs[queue.read_i];
|
|
||||||
int span_size = min(batch_size, queue.write_i - queue.read_i);
|
|
||||||
res.jobs.len = span_size;
|
|
||||||
|
|
||||||
queue.read_i += span_size;
|
|
||||||
res.gen_complete = queue.done_writing && queue.read_i == queue.write_i;
|
|
||||||
|
|
||||||
pthread_mutex_unlock(&queue.data_mutex);
|
|
||||||
return res;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
pthread_mutex_lock(&queue.jobs_available_mutex);
|
|
||||||
pthread_cond_wait(queue.jobs_available_cond, &queue.jobs_available_mutex);
|
|
||||||
if (stop_flag)
|
|
||||||
return {};
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class T> struct worker_thread_args {
|
|
||||||
Strategy<T> &strat;
|
|
||||||
work_queue<T> &queue;
|
|
||||||
bool *stop_flag;
|
|
||||||
};
|
|
||||||
|
|
||||||
template <class T> void *worker(void *args) {
|
|
||||||
worker_thread_args<T> *work_args = (worker_thread_args<T> *)args;
|
|
||||||
Strategy<T> &strat = work_args->strat;
|
|
||||||
work_queue<T> &queue = work_args->queue;
|
|
||||||
bool *stop_flag = work_args->stop_flag;
|
|
||||||
|
|
||||||
auto job_dispatcher = overload{
|
|
||||||
[strat](mutate_job<T> mj) {
|
|
||||||
strat.mutate(*mj.cell_entry->cell);
|
|
||||||
mj.cell_entry->stale = true;
|
|
||||||
},
|
|
||||||
[strat](fitness_job<T> fj) {
|
|
||||||
fj.cell_entry->score = strat.fitness(*fj.cell_entry->cell);
|
|
||||||
fj.cell_entry->stale = false;
|
|
||||||
},
|
|
||||||
[strat](crossover_job<T> cj) {
|
|
||||||
Array<T *> parent_cells, child_cells;
|
|
||||||
parent_cells = {(T **)malloc(sizeof(T *) * cj.parents.len),
|
|
||||||
cj.parents.len};
|
|
||||||
child_cells = {(T **)malloc(sizeof(T *) * cj.children_out.len),
|
|
||||||
cj.children_out.len};
|
|
||||||
for (int i = 0; i < cj.parents.len; i++) {
|
|
||||||
parent_cells[i] = cj.parents[i].cell;
|
|
||||||
}
|
|
||||||
for (int i = 0; i < cj.children_out.len; i++) {
|
|
||||||
child_cells[i] = cj.children_out[i].cell;
|
|
||||||
cj.children_out[i].stale = true;
|
|
||||||
}
|
|
||||||
strat.crossover(parent_cells, child_cells);
|
|
||||||
},
|
|
||||||
};
|
|
||||||
|
|
||||||
while (true) {
|
|
||||||
auto batch = get_job_batch(queue, strat.batch_size, stop_flag);
|
|
||||||
if (!batch || *stop_flag)
|
|
||||||
return NULL;
|
|
||||||
|
|
||||||
// Do the actual work
|
|
||||||
for (int i = 0; i < batch->jobs.len; i++) {
|
|
||||||
visit(job_dispatcher, batch->jobs[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (batch->gen_complete) {
|
|
||||||
pthread_cond_signal(&queue.gen_complete_cond, &queue.gen_complete_mutex);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class T> Stats<T> run(Strategy<T> strat) {
|
|
||||||
Stats<T> stats;
|
|
||||||
|
|
||||||
// The work queue is what all the worker threads will checking
|
|
||||||
// for jobs
|
|
||||||
work_queue<T> queue = make_work_queue<T>(strat.num_cells);
|
|
||||||
|
|
||||||
// The actual cells. Woo!
|
|
||||||
T cells[strat.num_cells];
|
|
||||||
|
|
||||||
// Using a vector so I can use the make_heap, push_heap, etc.
|
|
||||||
vector<cell_entry<T>> cell_queue;
|
|
||||||
for (int i = 0; i < strat.num_cells; i++) {
|
|
||||||
cells[i] = strat.make_default_cell();
|
|
||||||
cell_queue.push_back({0, &cells[i], true});
|
|
||||||
}
|
|
||||||
|
|
||||||
bool stop_flag = false;
|
|
||||||
worker_thread_args<T> args = {
|
|
||||||
.strat = strat, .queue = queue, .stop_flag = &stop_flag};
|
|
||||||
|
|
||||||
// spawn worker threads
|
|
||||||
pthread_t threads[strat.num_threads];
|
|
||||||
for (int i = 0; i < strat.num_threads; i++) {
|
|
||||||
pthread_create(&threads[i], NULL, worker<T>, (void *)args);
|
|
||||||
}
|
|
||||||
|
|
||||||
uint64_t rand_state = strat.rand_seed;
|
|
||||||
|
|
||||||
for (int i = 0; i < strat.num_generations; i++) {
|
|
||||||
// Mutate some random cells in the population
|
|
||||||
for (int i = 0; i < cell_queue.size(); i++) {
|
|
||||||
if (abs(norm_rand(rand_state)) < strat.mutation_chance) {
|
|
||||||
queue.jobs[queue.write_i] = mutate_job<T>{&cell_queue[i]};
|
|
||||||
queue.write_i++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
pthread_cond_broadcast(&queue.jobs_available_cond);
|
|
||||||
|
|
||||||
// Potential issue here where mutations aren't done computing and fitness
|
|
||||||
// jobs begin. maybe need to gate this.
|
|
||||||
|
|
||||||
// Generate fitness jobs
|
|
||||||
for (int i = 0; i < cell_queue.size(); i++) {
|
|
||||||
if (cell_queue[i].stale &&
|
|
||||||
(strat.test_all || abs(norm_rand(rand_state)) < strat.test_chance)) {
|
|
||||||
queue.jobs[queue.write_i] = fitness_job<T>{&cell_queue[i]};
|
|
||||||
queue.write_i++;
|
|
||||||
}
|
|
||||||
pthread_cond_broadcast(&queue.jobs_available_cond);
|
|
||||||
}
|
|
||||||
queue.done_writing = true;
|
|
||||||
|
|
||||||
// wait for fitness jobs to complete
|
|
||||||
pthread_mutex_lock(&queue.gen_complete_mutex);
|
|
||||||
|
|
||||||
// Before going to sleep, do a quick check to see if the fitness jobs are
|
|
||||||
// already complete.
|
|
||||||
pthread_mutex_lock(&queue.data_mutex);
|
|
||||||
bool already_complete = queue.read_i != queue.write_i;
|
|
||||||
pthread_mutex_unlock(&queue.data_mutex);
|
|
||||||
if (already_complete) {
|
|
||||||
pthread_mutex_unlock(&queue.gen_complete_mutex);
|
|
||||||
} else {
|
|
||||||
pthread_cond_wait(&queue.gen_complete_cond, &queue.gen_complete_mutex);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Sort cells on performance
|
|
||||||
std::sort(cell_queue.begin(), cell_queue.end(),
|
|
||||||
[strat](cell_entry<T> a, cell_entry<T> b) {
|
|
||||||
return strat.higher_fitness_is_better ? a > b : a < b;
|
|
||||||
});
|
|
||||||
|
|
||||||
printf("Top Score: %f\n", cell_queue[0].score);
|
|
||||||
|
|
||||||
if (!strat.enable_crossover)
|
|
||||||
continue;
|
|
||||||
|
|
||||||
// generate crossover jobs
|
|
||||||
// dear god. forgive me father
|
|
||||||
queue.write_i = 0;
|
|
||||||
queue.read_i = 0;
|
|
||||||
int count = 0;
|
|
||||||
int n_par = strat.crossover_parent_num;
|
|
||||||
int n_child = strat.crossover_children_num;
|
|
||||||
int child_i = cell_queue.size() - 1;
|
|
||||||
int par_i = 0;
|
|
||||||
while (child_i - par_i <= n_par + n_child) {
|
|
||||||
Array<cell_entry<T> *> parents = {
|
|
||||||
(cell_entry<T> **)malloc(sizeof(cell_entry<T> *) * n_par), n_par};
|
|
||||||
Array<cell_entry<T> *> children = {
|
|
||||||
(cell_entry<T> **)malloc(sizeof(cell_entry<T> *) * n_child), n_child};
|
|
||||||
|
|
||||||
for (; par_i < par_i + n_par; par_i++) {
|
|
||||||
parents[i] = cell_queue[par_i];
|
|
||||||
}
|
|
||||||
|
|
||||||
for (; child_i > child_i - n_child; child_i--) {
|
|
||||||
children[i] = cell_queue[child_i];
|
|
||||||
}
|
|
||||||
|
|
||||||
queue.jobs[queue.write_i] = crossover_job<T>{parents, children};
|
|
||||||
par_i += strat.crossover_parent_stride;
|
|
||||||
child_i += strat.crossover_children_stride;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// stop worker threads
|
|
||||||
stop_flag = true;
|
|
||||||
pthread_cond_broadcast(&queue.jobs_available_cond);
|
|
||||||
for (int i = 0; i < strat.num_threads; i++) {
|
|
||||||
pthread_join(threads[i], NULL);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class T> T &Array<T>::operator[](int i) {
|
|
||||||
return _data[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace genetic
|
|
||||||
10
src/main.cpp
10
src/main.cpp
@@ -35,8 +35,8 @@ void mutate(Array<float> &arr_to_mutate) {
|
|||||||
|
|
||||||
void crossover(const Array<Array<float>*> parents, const Array<Array<float> *> out_children) {
|
void crossover(const Array<Array<float>*> parents, const Array<Array<float> *> out_children) {
|
||||||
for (int i = 0; i < len; i++) {
|
for (int i = 0; i < len; i++) {
|
||||||
(*out_children._data[0])[i] = i < len/2 ? (*parents._data[0])[i] : (*parents._data[1])[i];
|
(*out_children.data[0])[i] = i < len/2 ? (*parents.data[0])[i] : (*parents.data[1])[i];
|
||||||
(*out_children._data[1])[i] = i < len/2 ? (*parents._data[1])[i] : (*parents._data[0])[i];
|
(*out_children.data[1])[i] = i < len/2 ? (*parents.data[1])[i] : (*parents.data[0])[i];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -47,8 +47,8 @@ float fitness(const Array<float> &cell) {
|
|||||||
float sum = 0;
|
float sum = 0;
|
||||||
float product = 1;
|
float product = 1;
|
||||||
for (int i = 0; i < cell.len; i++) {
|
for (int i = 0; i < cell.len; i++) {
|
||||||
sum += cell._data[i];
|
sum += cell.data[i];
|
||||||
product *= cell._data[i];
|
product *= cell.data[i];
|
||||||
}
|
}
|
||||||
return abs(sum - target_sum) + abs(product - target_product);
|
return abs(sum - target_sum) + abs(product - target_product);
|
||||||
}
|
}
|
||||||
@@ -62,8 +62,6 @@ int main(int argc, char **argv) {
|
|||||||
.test_all = true,
|
.test_all = true,
|
||||||
.test_chance = 0.0, // doesn't matter
|
.test_chance = 0.0, // doesn't matter
|
||||||
.enable_crossover = true,
|
.enable_crossover = true,
|
||||||
.enable_crossover_mutation = true,
|
|
||||||
.crossover_mutation_chance = 0.6f,
|
|
||||||
.crossover_parent_num = 2,
|
.crossover_parent_num = 2,
|
||||||
.crossover_parent_stride = 1,
|
.crossover_parent_stride = 1,
|
||||||
.crossover_children_num = 2,
|
.crossover_children_num = 2,
|
||||||
|
|||||||
Reference in New Issue
Block a user