Debugged multithreaded version. Now investigating some performance issues (not every thread is being used). This is an interesting version.

This commit is contained in:
2025-09-10 00:46:50 -05:00
parent 5a048bf469
commit f7e804607f
5 changed files with 221 additions and 74 deletions

View File

@@ -2,7 +2,9 @@
recent_file: path: "inc/genetic.h" recent_file: path: "inc/genetic.h"
recent_file: path: "inc/sync.h" recent_file: path: "inc/sync.h"
recent_file: path: "d:/os/obj/amd64fre/minkernel/crts/ucrt/src/appcrt/startup/mt/objfre/amd64/minkernel/crts/ucrt/src/appcrt/startup/abort.cpp"
recent_file: path: "src/main.cpp" recent_file: path: "src/main.cpp"
recent_file: path: "d:/os/obj/amd64fre/minkernel/crts/ucrt/src/appcrt/startup/mt/objfre/amd64/minkernel/crts/ucrt/src/appcrt/startup/assert.cpp"
recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.44.35207/include/vector" recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.44.35207/include/vector"
recent_file: path: "d:/os/obj/amd64fre/minkernel/crts/ucrt/src/appcrt/misc/mt/objfre/amd64/minkernel/crts/ucrt/src/appcrt/misc/invalid_parameter.cpp" recent_file: path: "d:/os/obj/amd64fre/minkernel/crts/ucrt/src/appcrt/misc/mt/objfre/amd64/minkernel/crts/ucrt/src/appcrt/misc/invalid_parameter.cpp"
recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.44.35207/include/xmemory" recent_file: path: "../../../../../Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.44.35207/include/xmemory"
@@ -14,4 +16,10 @@ target:
working_directory: bin working_directory: bin
label: main label: main
enabled: 1 enabled: 1
arguments: 1
}
breakpoint:
{
source_location: "inc/genetic.h:292:1"
hit_count: 1
} }

View File

@@ -1,6 +1,7 @@
#pragma once #pragma once
#include <algorithm> #include <algorithm>
#include <cfloat>
#include <cstdlib> #include <cstdlib>
#include "util.h" #include "util.h"
@@ -30,6 +31,12 @@ template <class T> struct Strategy {
// Number of times (epochs) to run the algorithm // Number of times (epochs) to run the algorithm
int num_generations; int num_generations;
// Each thread will integrate the best globally performing cell
bool share_breakthroughs;
// How many generations to explore before resyncing with the global best
int share_breakthrough_gen_period;
bool test_all; // Sets whether or not every cell's fitness is evaluated every bool test_all; // Sets whether or not every cell's fitness is evaluated every
// generation // generation
float test_chance; // Chance to test any given cell's fitness. Relevant only float test_chance; // Chance to test any given cell's fitness. Relevant only
@@ -66,16 +73,11 @@ template<class T> struct Stats {
DynArray<float> best_cell_fitness; DynArray<float> best_cell_fitness;
int gen; int gen;
bool done; bool done;
TimeSpan start, end; DynArray<TimeSpan> gen_time;
TimeSpan total_crossover_time; DynArray<TimeSpan> crossover_time;
int total_crossovers; DynArray<TimeSpan> mutate_time;
TimeSpan total_mutate_time; DynArray<TimeSpan> fitness_time;
int total_mutates; DynArray<TimeSpan> sorting_time;
TimeSpan total_fitness_time;
int total_evaluations;
TimeSpan total_sorting_time;
int total_sorts;
Mutex m; Mutex m;
}; };
@@ -90,6 +92,10 @@ struct WorkerThreadArgs {
Array<T> cells; Array<T> cells;
Array<CellTracker> trackers; Array<CellTracker> trackers;
Stats<T> *stats; Stats<T> *stats;
Mutex m;
float *best_global_score;
T* best_global_cell;
}; };
template<class T> T* _cellp(Array<T> cells, CellTracker tracker) { return &cells[tracker.cellid]; } template<class T> T* _cellp(Array<T> cells, CellTracker tracker) { return &cells[tracker.cellid]; }
@@ -101,6 +107,9 @@ template <class T> DWORD worker(LPVOID args) {
Array<T> cells = worker_args->cells; Array<T> cells = worker_args->cells;
Array<CellTracker> trackers = worker_args->trackers; Array<CellTracker> trackers = worker_args->trackers;
Stats<T> &stats = *worker_args->stats; Stats<T> &stats = *worker_args->stats;
float* best_global_score = worker_args->best_global_score;
T* best_global_cell = worker_args->best_global_cell;
Mutex best_m = worker_args->m;
// Prepare crossover operations as these will be the same every time except // Prepare crossover operations as these will be the same every time except
// for the exact cell pointers // for the exact cell pointers
@@ -109,9 +118,29 @@ template <class T> DWORD worker(LPVOID args) {
Array<T*> parents = make_array<T*>(npar); Array<T*> parents = make_array<T*>(npar);
Array<T*> children = make_array<T*>(nchild); Array<T*> children = make_array<T*>(nchild);
TimeSpan start_algo = now(); bool gt = strat.higher_fitness_is_better; // Writing strat.higher... is annoying
TimeSpan start;
// printf("Core: %d\n", get_affinity());
TimeSpan start, diff, gen_start;
while(stats.gen < strat.num_generations) { while(stats.gen < strat.num_generations) {
gen_start = now();
// 0. Share/Integrate global breakthrough
if (strat.share_breakthroughs && (stats.gen + get_affinity()) % strat.share_breakthrough_gen_period) {
lock(best_m);
if (better(gt, front(trackers).score, *best_global_score) != *best_global_score) {
// Share
*best_global_cell = *_cellp(cells, trackers[0]);
*best_global_score = trackers[0].score;
} else {
// Integrate
*_cellp(cells, trackers[0]) = *best_global_cell;
trackers[0].score = *best_global_score;
}
unlock(best_m);
}
// 1. crossover // 1. crossover
start = now(); start = now();
@@ -119,14 +148,19 @@ template <class T> DWORD worker(LPVOID args) {
int parent_end = npar; int parent_end = npar;
int child_begin = trackers.len-nchild; int child_begin = trackers.len-nchild;
while (parent_end <= child_begin) { while (parent_end <= child_begin) {
// Get pointers to all the parent cells // Get pointers to all the parent cells
for (int i = parent_end-npar; i < parent_end; i++) { for (int i = parent_end-npar; i < parent_end; i++) {
parents[i - (parent_end-npar)] = _cellp(cells, trackers[i]); T* cell = _cellp(cells, trackers[i]);
assert(cell != NULL);
parents[i - (parent_end-npar)] = cell;
} }
// Get pointers to all the child cells (these will be overwritten) // Get pointers to all the child cells (these will be overwritten)
for (int i = child_begin; i < child_begin+nchild; i++) { for (int i = child_begin; i < child_begin+nchild; i++) {
children[i-child_begin] = _cellp(cells, trackers[i]); T* cell = _cellp(cells, trackers[i]);
assert(cell != NULL);
children[i-child_begin] = cell;
} }
strat.crossover(parents, children); strat.crossover(parents, children);
parent_end += strat.crossover_parent_stride; parent_end += strat.crossover_parent_stride;
@@ -134,8 +168,7 @@ template <class T> DWORD worker(LPVOID args) {
} }
} }
lock(stats.m); lock(stats.m);
stats.total_crossover_time = stats.total_crossover_time + (now() - start); append(stats.crossover_time, now() - start);
stats.total_crossovers++;
unlock(stats.m); unlock(stats.m);
@@ -147,8 +180,7 @@ template <class T> DWORD worker(LPVOID args) {
} }
} }
lock(stats.m); lock(stats.m);
stats.total_mutate_time = stats.total_mutate_time + (now() - start); append(stats.mutate_time, now() - start);
stats.total_mutates++;
unlock(stats.m); unlock(stats.m);
// 3. evaluate // 3. evaluate
@@ -165,67 +197,63 @@ template <class T> DWORD worker(LPVOID args) {
} }
} }
lock(stats.m); lock(stats.m);
stats.total_fitness_time = stats.total_fitness_time + (now() - start); append(stats.fitness_time, now() - start);
stats.total_evaluations++;
unlock(stats.m); unlock(stats.m);
// 4. sort // 4. sort
start = now(); start = now();
std::sort(&trackers[0], &trackers[trackers.len-1], [strat](CellTracker &a, CellTracker &b){ return strat.higher_fitness_is_better ? a.score > b.score : a.score < b.score; }); std::sort(&trackers[0], &trackers[trackers.len-1], [strat](CellTracker &a, CellTracker &b){ return better(strat.higher_fitness_is_better, a.score, b.score) == a.score; });
lock(stats.m); lock(stats.m);
stats.total_sorting_time = stats.total_sorting_time + (now() - start); append(stats.sorting_time, now() - start);
stats.total_sorts++;
append(stats.best_cells, cells[trackers[0].cellid]); append(stats.best_cells, cells[trackers[0].cellid]);
append(stats.best_cell_fitness, trackers[0].score); append(stats.best_cell_fitness, trackers[0].score);
append(stats.gen_time, now() - gen_start);
stats.gen++; stats.gen++;
unlock(stats.m); unlock(stats.m);
} }
stats.done = true; stats.done = true;
stats.end = now();
return 0; return 0;
} }
template <class T> T run(Strategy<T> strat) { template <class T> T run(Strategy<T> strat) {
Array<Stats<T>> stats = make_array<Stats<T>>(strat.num_threads); Array<Stats<T>> stats = make_array<Stats<T>>(strat.num_threads);
Array<Thread> threads = make_array<Thread>(strat.num_threads); Array<Thread> threads = make_array<Thread>(strat.num_threads);
Array<T> cells = make_array<T>(strat.num_threads*strat.num_cells_per_thread);
Array<CellTracker> trackers = make_array<CellTracker>(cells.len);
Array<WorkerThreadArgs<T>> args = make_array<WorkerThreadArgs<T>>(strat.num_threads); Array<WorkerThreadArgs<T>> args = make_array<WorkerThreadArgs<T>>(strat.num_threads);
for (int i = 0; i < cells.len; i++) { float best_global_score = strat.higher_fitness_is_better ? FLT_MIN : FLT_MAX;
cells[i] = strat.make_default_cell(); T best_global_cell;
trackers[i] = {0, i};
} allow_all_processors();
set_affinity(0);
for (int i = 0; i < strat.num_threads; i++) { for (int i = 0; i < strat.num_threads; i++) {
stats[i] = { stats[i] = {
.best_cells=make_dynarray<T>(strat.num_generations), .best_cells=make_dynarray<T>(strat.num_generations),
.best_cell_fitness=make_dynarray<float>(strat.num_generations), .best_cell_fitness=make_dynarray<float>(strat.num_generations),
.gen=0, .gen_time=make_dynarray<TimeSpan>(strat.num_generations),
.done=false, .crossover_time=make_dynarray<TimeSpan>(strat.num_generations),
.start=from_s(0), .mutate_time=make_dynarray<TimeSpan>(strat.num_generations),
.end=from_s(0), .fitness_time=make_dynarray<TimeSpan>(strat.num_generations),
.total_crossover_time=from_s(0), .sorting_time=make_dynarray<TimeSpan>(strat.num_generations),
.total_crossovers=0,
.total_mutate_time=from_s(0),
.total_mutates=0,
.total_fitness_time=from_s(0),
.total_evaluations=0,
.total_sorting_time=from_s(0),
.total_sorts=0,
.m=make_mutex() .m=make_mutex()
}; };
Array<T> tcells = { &cells[i*strat.num_cells_per_thread], strat.num_cells_per_thread }; Array<T> cells = make_array<T>(strat.num_threads*strat.num_cells_per_thread);
Array<CellTracker> ttrackers = { &trackers[i*strat.num_cells_per_thread], strat.num_cells_per_thread }; Array<CellTracker> trackers = make_array<CellTracker>(strat.num_cells_per_thread);
for (int i = 0; i < strat.num_cells_per_thread; i++) {
cells[i] = strat.make_default_cell();
trackers[i] = {0, i};
}
args[i].strat=strat; args[i].strat=strat;
args[i].cells=tcells; args[i].cells=cells;
args[i].trackers=ttrackers; args[i].trackers=trackers;
args[i].stats=&stats[i]; args[i].stats=&stats[i];
args[i].best_global_score=&best_global_score;
args[i].best_global_cell=&best_global_cell;
args[i].m = make_mutex();
threads[i] = make_thread(worker<T>, &args[i]); threads[i] = make_thread(worker<T>, &args[i], i+1);
} }
// We are the stats thread // We are the stats thread
@@ -234,12 +262,14 @@ template <class T> T run(Strategy<T> strat) {
sleep(from_s(strat.stats_print_period_s)); sleep(from_s(strat.stats_print_period_s));
printf("**********************\n"); printf("**********************\n");
float g_avg_gen_time = 0;
float g_avg_crossover_time = 0; float g_avg_crossover_time = 0;
float g_avg_mutate_time = 0; float g_avg_mutate_time = 0;
float g_avg_fitness_time = 0; float g_avg_fitness_time = 0;
float g_avg_sorting_time = 0; float g_avg_sorting_time = 0;
float g_avg_overhead_time = 0;
float g_progress_per = 0; float g_progress_per = 0;
float g_best_fitness = strat.higher_fitness_is_better ? 0.0 : 999999999999999999.9; float g_best_fitness = strat.higher_fitness_is_better ? FLT_MIN : FLT_MAX;
complete = true; complete = true;
@@ -247,43 +277,57 @@ template <class T> T run(Strategy<T> strat) {
lock(stats[i].m); lock(stats[i].m);
complete &= stats[i].done; complete &= stats[i].done;
float avg_crossover_time = to_s(stats[i].total_crossover_time) / static_cast<float>(stats[i].total_crossovers); int end = stats[i].gen_time.end-1;
float avg_mutate_time = to_s(stats[i].total_mutate_time) / static_cast<float>(stats[i].total_mutates);
float avg_fitness_time = to_s(stats[i].total_fitness_time) / static_cast<float>(stats[i].total_evaluations);
float avg_sorting_time = to_s(stats[i].total_sorting_time) / static_cast<float>(stats[i].total_sorts);
float gen_time = to_s(stats[i].gen_time[end]);
float crossover_time = to_s(stats[i].crossover_time[end]);
float mutate_time = to_s(stats[i].mutate_time[end]);
float fitness_time = to_s(stats[i].fitness_time[end]);
float sorting_time = to_s(stats[i].sorting_time[end]);
float progress_per = static_cast<float>(stats[i].gen) / static_cast<float>(strat.num_generations) * 100; float progress_per = static_cast<float>(stats[i].gen) / static_cast<float>(strat.num_generations) * 100;
float best_score = back(stats[i].best_cell_fitness); float best_score = back(stats[i].best_cell_fitness);
g_avg_crossover_time += avg_crossover_time; float overhead = max(0, gen_time - (crossover_time + mutate_time + fitness_time + sorting_time));
g_avg_mutate_time += avg_mutate_time;
g_avg_fitness_time += avg_fitness_time;
g_avg_sorting_time += avg_sorting_time;
g_progress_per += progress_per;
g_best_fitness = strat.higher_fitness_is_better ? max(best_score, g_best_fitness) : min(best_score, g_best_fitness);
printf("THREAD %d, Progress %.1f\%, Top Score %.5e, Cross %.5f (s), Mutate: %.5f (s), Fitness: %.5f (s), Sorting: %.5f (s)\n", i, progress_per, best_score, avg_crossover_time, avg_mutate_time, avg_fitness_time, avg_sorting_time); float overhead_per = overhead / gen_time * 100;
g_avg_gen_time += gen_time;
g_avg_crossover_time += crossover_time;
g_avg_mutate_time += mutate_time;
g_avg_fitness_time += fitness_time;
g_avg_sorting_time += sorting_time;
g_progress_per += progress_per;
g_best_fitness = better(strat.higher_fitness_is_better, best_score, g_best_fitness);
g_avg_overhead_time += overhead;
printf("%d, Progress %d/%d, Top: %.5e, Overhead Per: %.4f%%, Gen: %.4f, Overhead: %.4f, Cross: %.4f (s), Mutate: %.4f (s), Fitness: %.4f (s), Sorting: %.4f (s)\n", i, stats[i].gen, strat.num_generations, best_score, overhead_per, gen_time, overhead, crossover_time, mutate_time, fitness_time, sorting_time);
unlock(stats[i].m); unlock(stats[i].m);
} }
g_avg_gen_time /= stats.len;
g_avg_crossover_time /= stats.len; g_avg_crossover_time /= stats.len;
g_avg_mutate_time /= stats.len; g_avg_mutate_time /= stats.len;
g_avg_fitness_time /= stats.len; g_avg_fitness_time /= stats.len;
g_avg_sorting_time /= stats.len; g_avg_sorting_time /= stats.len;
g_progress_per /= stats.len; g_progress_per /= stats.len;
printf("OVERALL, Progress %.1f\%, Top Score: %.5e, Cross %.5f (s), Mutate: %.5f (s), Fitness: %.5f (s), Sorting: %.5f (s)\n", g_progress_per, g_best_fitness, g_avg_crossover_time, g_avg_mutate_time, g_avg_fitness_time, g_avg_sorting_time); g_avg_overhead_time /= stats.len;
float g_avg_overhead_per = g_avg_overhead_time / g_avg_gen_time * 100;
printf("GLOBAL, Progress %.1f%%, Top: %.5e, Overhead Per: %.4f%%, Gen: %.4f, Overhead: %.4f, Cross: %.4f (s), Mutate: %.4f (s), Fitness: %.4f (s), Sorting: %.4f (s)\n", g_progress_per, g_best_fitness, g_avg_overhead_per, g_avg_gen_time, g_avg_overhead_time, g_avg_crossover_time, g_avg_mutate_time, g_avg_fitness_time, g_avg_sorting_time);
if (complete) break; if (complete) break;
} }
for (int i = 0; i < threads.len; i++) {
join(threads[i]);
}
T best_cell; T best_cell;
// TODO: bad // TODO: bad
float best_score = strat.higher_fitness_is_better ? 0.0 : 999999999999999999.9; float best_score = strat.higher_fitness_is_better ? FLT_MIN : FLT_MAX;
for (int i = 0; i < stats.len; i++) { for (int i = 0; i < stats.len; i++) {
float score = back(stats[i].best_cell_fitness); float score = back(stats[i].best_cell_fitness);
if (strat.higher_fitness_is_better ? score > best_score : score < best_score) { if (strat.higher_fitness_is_better ? score > best_score : score < best_score) {

View File

@@ -1,5 +1,9 @@
#pragma once #pragma once
#include <cassert>
#include <cstdint>
#include <cstdio>
#ifdef _WIN32 #ifdef _WIN32
#include <windows.h> #include <windows.h>
#endif #endif
@@ -17,6 +21,14 @@ typedef LPVOID ThreadArg;
const TimeSpan infinite_ts = { .QuadPart = LLONG_MAX }; const TimeSpan infinite_ts = { .QuadPart = LLONG_MAX };
int get_num_cores() {
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
return sysinfo.dwNumberOfProcessors;
}
const int num_cores = get_num_cores();
LARGE_INTEGER _init_freq() { LARGE_INTEGER _init_freq() {
LARGE_INTEGER freq; LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq); QueryPerformanceFrequency(&freq);
@@ -27,8 +39,13 @@ static LARGE_INTEGER freq = _init_freq();
#endif #endif
Thread make_thread(ThreadFunc t, ThreadArg a); Thread make_thread(ThreadFunc t, ThreadArg a);
Thread make_thread(ThreadFunc t, ThreadArg a, int core_affinity);
void join(Thread t); void join(Thread t);
void sleep(TimeSpan ts); void sleep(TimeSpan ts);
void allow_all_processors();
void set_affinity(Thread &t, int core);
void set_affinity(int core);
int get_affinity();
Mutex make_mutex(); Mutex make_mutex();
void lock(Mutex &m); void lock(Mutex &m);
@@ -64,11 +81,60 @@ double to_hours(TimeSpan &ts);
#ifdef _WIN32 #ifdef _WIN32
uint64_t bitmask (unsigned short n) {
if (n == 64) return -((uint64_t)1);
return (((uint64_t) 1) << n) - 1;
}
const int tab64[64] = {
63, 0, 58, 1, 59, 47, 53, 2,
60, 39, 48, 27, 54, 33, 42, 3,
61, 51, 37, 40, 49, 18, 28, 20,
55, 30, 34, 11, 43, 14, 22, 4,
62, 57, 46, 52, 38, 26, 32, 41,
50, 36, 17, 19, 29, 10, 13, 21,
56, 45, 25, 31, 35, 16, 9, 12,
44, 24, 15, 8, 23, 7, 6, 5};
int log2_64 (uint64_t value)
{
value |= value >> 1;
value |= value >> 2;
value |= value >> 4;
value |= value >> 8;
value |= value >> 16;
value |= value >> 32;
return tab64[((uint64_t)((value - (value >> 1))*0x07EDD5E59A4E28C2)) >> 58];
}
Thread make_thread(ThreadFunc f, ThreadArg a) { Thread make_thread(ThreadFunc f, ThreadArg a) {
DWORD tid; DWORD tid;
return CreateThread(NULL, 0, f, a, 0, &tid); return CreateThread(NULL, 0, f, a, 0, &tid);
} }
struct DummyThreadArgs {
int core_affinity;
ThreadFunc f;
ThreadArg a;
};
DWORD _dummy_thread(LPVOID a) {
DummyThreadArgs *wrap = static_cast<DummyThreadArgs*>(a);
set_affinity(wrap->core_affinity);
return wrap->f(wrap->a);
}
Thread make_thread(ThreadFunc f, ThreadArg a, int core_affinity) {
DWORD tid;
DummyThreadArgs *args = (DummyThreadArgs*)malloc(sizeof(DummyThreadArgs));
*args = {
.core_affinity=core_affinity,
.f=f,
.a=a
};
return CreateThread(NULL, 0, _dummy_thread, args, 0, &tid);
}
void join(Thread t) { void join(Thread t) {
WaitForSingleObject(t, INFINITE); WaitForSingleObject(t, INFINITE);
} }
@@ -77,6 +143,33 @@ void sleep(TimeSpan ts) {
Sleep(static_cast<DWORD>(to_ms(ts))); Sleep(static_cast<DWORD>(to_ms(ts)));
} }
void allow_all_processors() {
Thread t = GetCurrentThread();
DWORD affinity = bitmask(num_cores);
SetProcessAffinityMask(t, affinity);
}
void set_affinity(Thread &t, int core) {
DWORD mask = 1 << (core % num_cores);
DWORD old = SetThreadAffinityMask(t, mask);
DWORD confirm = SetThreadAffinityMask(t, mask);
assert(old && GetLastError() != ERROR_INVALID_PARAMETER && mask == confirm);
}
void set_affinity(int core) {
Thread cur = GetCurrentThread();
set_affinity(cur, core);
}
int get_affinity() {
Thread t = GetCurrentThread();
DWORD mask = 1;
DWORD affinity = SetThreadAffinityMask(t, (DWORD_PTR)mask);
DWORD check = SetThreadAffinityMask(t, (DWORD_PTR)affinity);
assert(check == mask);
return log2_64(affinity);
}
Mutex make_mutex() { Mutex make_mutex() {
Mutex m; Mutex m;
InitializeCriticalSection(&m); InitializeCriticalSection(&m);

View File

@@ -3,6 +3,7 @@
#include <cstring> #include <cstring>
#define min(A, B) ((A < B) ? (A) : (B)) #define min(A, B) ((A < B) ? (A) : (B))
#define max(A, B) ((A > B) ? (A) : (B)) #define max(A, B) ((A > B) ? (A) : (B))
#define better(GT, A, B) (GT ? max((A), (B)) : min((A), (B)))
template <class T> struct Array { template <class T> struct Array {
T *data; T *data;
@@ -18,6 +19,8 @@ template <class T> Array<T> make_array(int len) {
.len=len .len=len
}; };
} }
template <class T> T back(Array<T> &a) { return a.data[a.len-1]; }
template <class T> T front(Array<T> &a) { return a.data[0]; }
template <class T> struct DynArray { template <class T> struct DynArray {
T* _data; T* _data;
@@ -48,6 +51,6 @@ template <class T> void append(DynArray<T> &a, T el) {
a[a.end++] = el; a[a.end++] = el;
} }
template <class T> T& back(DynArray<T> &a) { return a._data[a.end-1]; } template <class T> T back(DynArray<T> &a) { return a._data[a.end-1]; }
template <class T> T& front(DynArray<T> &a) { return a._data[0]; } template <class T> T front(DynArray<T> &a) { return a._data[0]; }

View File

@@ -41,9 +41,6 @@ void crossover(const Array<Array<float>*> parents, const Array<Array<float> *> o
} }
} }
// norm_rand can go negative. fix in genetic.cpp
// child stride doesn't make sense. Should always skip over child num
float fitness(const Array<float> &cell) { float fitness(const Array<float> &cell) {
float sum = 0; float sum = 0;
float product = 1; float product = 1;
@@ -55,12 +52,14 @@ float fitness(const Array<float> &cell) {
} }
int main(int argc, char **argv) { int main(int argc, char **argv) {
int num_gens = 1000; int num_gens = 10000;
Strategy<Array<float>> strat { Strategy<Array<float>> strat {
.num_threads = 1, .num_threads = atoi(argv[1]),
.stats_print_period_s = 2, .stats_print_period_s = 2,
.num_cells_per_thread = 10000, .num_cells_per_thread = 100000,
.num_generations = num_gens, .num_generations = num_gens,
.share_breakthroughs=true,
.share_breakthrough_gen_period=10,
.test_all = true, .test_all = true,
.test_chance = 0.0, // doesn't matter .test_chance = 0.0, // doesn't matter
.enable_crossover = true, .enable_crossover = true,