#include namespace genetic { template struct Array; template struct Stats; template struct Strategy; template Stats run(Strategy); template struct Strategy { int num_threads; // Number of worker threads that will be evaluating cell // fitness. int batch_size; // Number of cells a worker thread tries to work on in a row // before accessing/locking the work queue again. int num_cells; // Size of the population pool int num_generations; // Number of times (epochs) to run the algorithm bool test_all; // Sets whether or not every cell's fitness is evaluated every // generation float test_chance; // Chance to test any given cell's fitness. Relevant only // if test_all is false. bool enable_crossover; // Cells that score well in the evaluation stage // produce children that replace low-scoring cells bool enable_crossover_mutation; // Mutations can occur after crossover float crossover_mutation_chance; // Chance to mutate a child cell int crossover_parent_num; // Number of unique high-scoring parents in a // crossover call. int crossover_parent_stride; // Number of parents to skip over when moving to // the next set of parents. A stride of 1 would // produce maximum overlap because the set of // parents would only change by one every // crossover. int crossover_children_num; // Number of children to expect the user to // produce in the crossover function. bool enable_mutation; // Cells may be mutated // before fitness evaluation float mutation_chance; // Chance for any given cell to be mutated cells during // the mutation uint64_t rand_seed; bool higher_fitness_is_better; // Sets whether or not to consider higher // fitness values better or worse. Set this to // false if fitness is an error function. // User defined functions T (*make_default_cell)(); void (*mutate)(T &cell_to_modify); void (*crossover)(const Array parents, const Array out_children); float (*fitness)(const T &cell); }; template struct Stats { std::vector best_cell; std::vector best_cell_fitness; }; template struct Array { T *_data; int len; T &operator[](int i); }; } // namespace genetic