#pragma once #include #include #include "util.h" #include "sync.h" #include "rand.h" using namespace sync; namespace genetic { template struct Stats; template struct Strategy; struct CellTracker; template T run(Strategy); template struct Strategy { // Number of worker threads that will be evaluating cell fitness int num_threads; // Period of print statements (in seconds) float stats_print_period_s; // Size of the population pool per sim thread int num_cells_per_thread; // Number of times (epochs) to run the algorithm int num_generations; bool test_all; // Sets whether or not every cell's fitness is evaluated every // generation float test_chance; // Chance to test any given cell's fitness. Relevant only // if test_all is false. bool enable_crossover; // Cells that score well in the evaluation stage // produce children that replace low-scoring cells int crossover_parent_num; // Number of unique high-scoring parents in a // crossover call. int crossover_parent_stride; // Number of parents to skip over when moving to // the next set of parents. A stride of 1 would // produce maximum overlap because the set of // parents would only change by one every // crossover. int crossover_children_num; // Number of children to expect the user to // produce in the crossover function. bool enable_mutation; // Cells may be mutated // before fitness evaluation float mutation_chance; // Chance for any given cell to be mutated cells during // the mutation uint64_t rand_seed; bool higher_fitness_is_better; // Sets whether or not to consider higher // fitness values better or worse. Set this to // false if fitness is an error function. // User defined functions T (*make_default_cell)(); void (*mutate)(T &cell_to_modify); void (*crossover)(const Array parents, const Array out_children); float (*fitness)(const T &cell); }; template struct Stats { DynArray best_cells; DynArray best_cell_fitness; int gen; bool done; TimeSpan start, end; TimeSpan total_crossover_time; int total_crossovers; TimeSpan total_mutate_time; int total_mutates; TimeSpan total_fitness_time; int total_evaluations; TimeSpan total_sorting_time; int total_sorts; Mutex m; }; struct CellTracker { float score; int cellid; }; template struct WorkerThreadArgs { Strategy strat; Array cells; Array trackers; Stats *stats; }; template T* _cellp(Array cells, CellTracker tracker) { return &cells[tracker.cellid]; } template DWORD worker(LPVOID args) { // Unpack everything... WorkerThreadArgs* worker_args = static_cast*>(args); Strategy strat = worker_args->strat; Array cells = worker_args->cells; Array trackers = worker_args->trackers; Stats &stats = *worker_args->stats; // Prepare crossover operations as these will be the same every time except // for the exact cell pointers int npar = strat.crossover_parent_num; int nchild = strat.crossover_children_num; Array parents = make_array(npar); Array children = make_array(nchild); TimeSpan start_algo = now(); TimeSpan start; while(stats.gen < strat.num_generations) { // 1. crossover start = now(); if (strat.enable_crossover) { int parent_end = npar; int child_begin = trackers.len-nchild; while (parent_end <= child_begin) { // Get pointers to all the parent cells for (int i = parent_end-npar; i < parent_end; i++) { parents[i - (parent_end-npar)] = _cellp(cells, trackers[i]); } // Get pointers to all the child cells (these will be overwritten) for (int i = child_begin; i < child_begin+nchild; i++) { children[i-child_begin] = _cellp(cells, trackers[i]); } strat.crossover(parents, children); parent_end += strat.crossover_parent_stride; child_begin -= nchild; } } lock(stats.m); stats.total_crossover_time = stats.total_crossover_time + (now() - start); stats.total_crossovers++; unlock(stats.m); // 2. mutate start = now(); for (int i = 0; i < trackers.len; i++) { if (abs(norm_rand(strat.rand_seed)) < strat.mutation_chance) { strat.mutate(cells[trackers[i].cellid]); } } lock(stats.m); stats.total_mutate_time = stats.total_mutate_time + (now() - start); stats.total_mutates++; unlock(stats.m); // 3. evaluate start = now(); if (strat.test_all) { for (int i = 0; i < trackers.len; i++) { trackers[i].score = strat.fitness(cells[trackers[i].cellid]); } } else { for (int i = 0; i < trackers.len; i++) { if (abs(norm_rand(strat.rand_seed)) < strat.test_chance) { trackers[i].score = strat.fitness(cells[trackers[i].cellid]); } } } lock(stats.m); stats.total_fitness_time = stats.total_fitness_time + (now() - start); stats.total_evaluations++; unlock(stats.m); // 4. sort start = now(); std::sort(&trackers[0], &trackers[trackers.len-1], [strat](CellTracker &a, CellTracker &b){ return strat.higher_fitness_is_better ? a.score > b.score : a.score < b.score; }); lock(stats.m); stats.total_sorting_time = stats.total_sorting_time + (now() - start); stats.total_sorts++; append(stats.best_cells, cells[trackers[0].cellid]); append(stats.best_cell_fitness, trackers[0].score); stats.gen++; unlock(stats.m); } stats.done = true; stats.end = now(); return 0; } template T run(Strategy strat) { Array> stats = make_array>(strat.num_threads); Array threads = make_array(strat.num_threads); Array cells = make_array(strat.num_threads*strat.num_cells_per_thread); Array trackers = make_array(cells.len); Array> args = make_array>(strat.num_threads); for (int i = 0; i < cells.len; i++) { cells[i] = strat.make_default_cell(); trackers[i] = {0, i}; } for (int i = 0; i < strat.num_threads; i++) { stats[i] = { .best_cells=make_dynarray(strat.num_generations), .best_cell_fitness=make_dynarray(strat.num_generations), .gen=0, .done=false, .start=from_s(0), .end=from_s(0), .total_crossover_time=from_s(0), .total_crossovers=0, .total_mutate_time=from_s(0), .total_mutates=0, .total_fitness_time=from_s(0), .total_evaluations=0, .total_sorting_time=from_s(0), .total_sorts=0, .m=make_mutex() }; Array tcells = { &cells[i*strat.num_cells_per_thread], strat.num_cells_per_thread }; Array ttrackers = { &trackers[i*strat.num_cells_per_thread], strat.num_cells_per_thread }; args[i].strat=strat; args[i].cells=tcells; args[i].trackers=ttrackers; args[i].stats=&stats[i]; threads[i] = make_thread(worker, &args[i]); } // We are the stats thread bool complete = false; while (!complete) { sleep(from_s(strat.stats_print_period_s)); printf("**********************\n"); float g_avg_crossover_time = 0; float g_avg_mutate_time = 0; float g_avg_fitness_time = 0; float g_avg_sorting_time = 0; float g_progress_per = 0; float g_best_fitness = strat.higher_fitness_is_better ? 0.0 : 999999999999999999.9; complete = true; for (int i = 0; i < stats.len; i++) { lock(stats[i].m); complete &= stats[i].done; float avg_crossover_time = to_s(stats[i].total_crossover_time) / static_cast(stats[i].total_crossovers); float avg_mutate_time = to_s(stats[i].total_mutate_time) / static_cast(stats[i].total_mutates); float avg_fitness_time = to_s(stats[i].total_fitness_time) / static_cast(stats[i].total_evaluations); float avg_sorting_time = to_s(stats[i].total_sorting_time) / static_cast(stats[i].total_sorts); float progress_per = static_cast(stats[i].gen) / static_cast(strat.num_generations) * 100; float best_score = back(stats[i].best_cell_fitness); g_avg_crossover_time += avg_crossover_time; g_avg_mutate_time += avg_mutate_time; g_avg_fitness_time += avg_fitness_time; g_avg_sorting_time += avg_sorting_time; g_progress_per += progress_per; g_best_fitness = strat.higher_fitness_is_better ? max(best_score, g_best_fitness) : min(best_score, g_best_fitness); printf("THREAD %d, Progress %.1f\%, Top Score %.5e, Cross %.5f (s), Mutate: %.5f (s), Fitness: %.5f (s), Sorting: %.5f (s)\n", i, progress_per, best_score, avg_crossover_time, avg_mutate_time, avg_fitness_time, avg_sorting_time); unlock(stats[i].m); } g_avg_crossover_time /= stats.len; g_avg_mutate_time /= stats.len; g_avg_fitness_time /= stats.len; g_avg_sorting_time /= stats.len; g_progress_per /= stats.len; printf("OVERALL, Progress %.1f\%, Top Score: %.5e, Cross %.5f (s), Mutate: %.5f (s), Fitness: %.5f (s), Sorting: %.5f (s)\n", g_progress_per, g_best_fitness, g_avg_crossover_time, g_avg_mutate_time, g_avg_fitness_time, g_avg_sorting_time); if (complete) break; } T best_cell; // TODO: bad float best_score = strat.higher_fitness_is_better ? 0.0 : 999999999999999999.9; for (int i = 0; i < stats.len; i++) { float score = back(stats[i].best_cell_fitness); if (strat.higher_fitness_is_better ? score > best_score : score < best_score) { best_cell = back(stats[i].best_cells); best_score = score; } } return best_cell; } } // namespace genetic