#include #include namespace genetic { template struct Strategy { int num_threads; // Number of worker threads that will be evaluating cell // fitness. int num_retries; // Number of times worker threads will try to grab work pool // lock before sleeping int batch_size; // Number of cells a worker thread tries to evaluate in a row // before locking the pool again. int num_cells; // Size of the population pool int num_generations; // Number of times (epochs) to run the algorithm bool test_all; // Sets whether or not every cell is tested every generation float test_chance; // Chance to test any given cell's fitness. Relevant only // if test_all is false. bool enable_crossover; // Cells that score well in the evaluation stage // produce children that replace low-scoring cells bool enable_crossover_mutation; // Mutations can occur after crossover float crossover_mutation_chance; // Chance to mutate a child cell int crossover_parent_num; // Number of unique high-scoring parents in a // crossover call. int crossover_children_num; // Number of children produced in a crossover bool enable_mutation; // Cells may be mutated before fitness evaluation float mutation_chance; // Chance to mutate cells before fitness evaluation // User defined functions T (*make_default_cell)(); void (*mutate)(T &cell); void (*crossover)(const std::span &parents, std::span &out_children); float (*fitness)(const T &cell); }; template struct Stats { std::vector best_cell; std::vector average_fitness; }; template Stats run(Strategy); } // namespace genetic