Files
GeneticAlgo/inc/genetic.h

373 lines
12 KiB
C++

#pragma once
#include <algorithm>
#include <cfloat>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include "util.h"
#include "sync.h"
#include "rand.h"
using namespace sync;
namespace genetic {
template <class T> struct Stats;
template <class T> struct Strategy;
struct CellTracker;
const char *global_stat_format_str = "GLOBAL, Progress %.1f%%, Top: %.5e, Overhead Per: %.4f%%, Gen: %.4f, Overhead: %.4f, Cross: %.4f (s), Mutate: %.4f (s), Fitness: %.4f (s), Sorting: %.4f (s)\n";
const char *thread_stat_format_str = "%d, Progress %d/%d, Top: %.5e, Overhead Per: %.4f%%, Gen: %.4f, Overhead: %.4f, Cross: %.4f (s), Mutate: %.4f (s), Fitness: %.4f (s), Sorting: %.4f (s)\n";
static int stat_str_len = 2*max(strlen(thread_stat_format_str), strlen(global_stat_format_str));
static char *stat_str = (char*)malloc(stat_str_len);
static char *filename = (char*)malloc(64);
static int n_threads = 0;
void log(const char *format_str, ...) {
va_list list;
va_start(list, format_str);
vsprintf_s(stat_str, 2*max(strlen(thread_stat_format_str), strlen(global_stat_format_str)), format_str, list);
printf("%s", stat_str);
FILE *f;
sprintf(filename, "logs/logs-%d.txt", n_threads);
fopen_s(&f, filename, "a");
fwrite(stat_str, sizeof(char), strlen(stat_str), f);
fclose(f);
}
template <class T> T run(Strategy<T>);
template <class T> struct Strategy {
// Number of worker threads that will be evaluating cell fitness
int num_threads;
// Period of print statements (in seconds)
float stats_print_period_s;
// Size of the population pool per sim thread
int num_cells_per_thread;
// Number of times (epochs) to run the algorithm
int num_generations;
// Each thread will integrate the best globally performing cell
bool share_breakthroughs;
// How many generations to explore before resyncing with the global best
int share_breakthrough_gen_period;
bool test_all; // Sets whether or not every cell's fitness is evaluated every
// generation
float test_chance; // Chance to test any given cell's fitness. Relevant only
// if test_all is false.
bool enable_crossover; // Cells that score well in the evaluation stage
// produce children that replace low-scoring cells
int crossover_parent_num; // Number of unique high-scoring parents in a
// crossover call.
int crossover_parent_stride; // Number of parents to skip over when moving to
// the next set of parents. A stride of 1 would
// produce maximum overlap because the set of
// parents would only change by one every
// crossover.
int crossover_children_num; // Number of children to expect the user to
// produce in the crossover function.
bool enable_mutation; // Cells may be mutated
// before fitness evaluation
float mutation_chance; // Chance for any given cell to be mutated cells during
// the mutation
uint64_t rand_seed;
bool higher_fitness_is_better; // Sets whether or not to consider higher
// fitness values better or worse. Set this to
// false if fitness is an error function.
// User defined functions
T (*make_default_cell)();
void (*mutate)(T &cell_to_modify);
void (*crossover)(const Array<T *> parents, const Array<T *> out_children);
float (*fitness)(const T &cell);
};
template<class T> struct Stats {
DynArray<T> best_cells;
DynArray<float> best_cell_fitness;
int gen;
bool done;
DynArray<TimeSpan> gen_time;
DynArray<TimeSpan> crossover_time;
DynArray<TimeSpan> mutate_time;
DynArray<TimeSpan> fitness_time;
DynArray<TimeSpan> sorting_time;
Mutex m;
};
struct CellTracker {
float score;
int cellid;
};
template<class T>
struct WorkerThreadArgs {
Strategy<T> strat;
Array<T> cells;
Array<CellTracker> trackers;
Stats<T> *stats;
Mutex m;
float *best_global_score;
T* best_global_cell;
};
template<class T> T* _cellp(Array<T> cells, CellTracker tracker) { return &cells[tracker.cellid]; }
template <class T> DWORD worker(LPVOID args) {
// Unpack everything...
WorkerThreadArgs<T>* worker_args = static_cast<WorkerThreadArgs<T>*>(args);
Strategy<T> strat = worker_args->strat;
Array<T> cells = worker_args->cells;
Array<CellTracker> trackers = worker_args->trackers;
Stats<T> &stats = *worker_args->stats;
float* best_global_score = worker_args->best_global_score;
T* best_global_cell = worker_args->best_global_cell;
Mutex best_m = worker_args->m;
// Prepare crossover operations as these will be the same every time except
// for the exact cell pointers
int npar = strat.crossover_parent_num;
int nchild = strat.crossover_children_num;
Array<T*> parents = make_array<T*>(npar);
Array<T*> children = make_array<T*>(nchild);
bool gt = strat.higher_fitness_is_better; // Writing strat.higher... is annoying
TimeSpan start, diff, gen_start;
while(stats.gen < strat.num_generations) {
gen_start = now();
// 0. Share/Integrate global breakthrough
if (strat.share_breakthroughs && (stats.gen + get_affinity()) % strat.share_breakthrough_gen_period) {
lock(best_m);
if (better(gt, front(trackers).score, *best_global_score) != *best_global_score) {
// Share
*best_global_cell = *_cellp(cells, trackers[0]);
*best_global_score = trackers[0].score;
} else {
// Integrate
*_cellp(cells, trackers[0]) = *best_global_cell;
trackers[0].score = *best_global_score;
}
unlock(best_m);
}
// 1. crossover
start = now();
if (strat.enable_crossover) {
int parent_end = npar;
int child_begin = trackers.len-nchild;
while (parent_end <= child_begin) {
// Get pointers to all the parent cells
for (int i = parent_end-npar; i < parent_end; i++) {
T* cell = _cellp(cells, trackers[i]);
assert(cell != NULL);
parents[i - (parent_end-npar)] = cell;
}
// Get pointers to all the child cells (these will be overwritten)
for (int i = child_begin; i < child_begin+nchild; i++) {
T* cell = _cellp(cells, trackers[i]);
assert(cell != NULL);
children[i-child_begin] = cell;
}
strat.crossover(parents, children);
parent_end += strat.crossover_parent_stride;
child_begin -= nchild;
}
}
lock(stats.m);
append(stats.crossover_time, now() - start);
unlock(stats.m);
// 2. mutate
start = now();
for (int i = 0; i < trackers.len; i++) {
if (abs(norm_rand(strat.rand_seed)) < strat.mutation_chance) {
strat.mutate(cells[trackers[i].cellid]);
}
}
lock(stats.m);
append(stats.mutate_time, now() - start);
unlock(stats.m);
// 3. evaluate
start = now();
if (strat.test_all) {
for (int i = 0; i < trackers.len; i++) {
trackers[i].score = strat.fitness(cells[trackers[i].cellid]);
}
} else {
for (int i = 0; i < trackers.len; i++) {
if (abs(norm_rand(strat.rand_seed)) < strat.test_chance) {
trackers[i].score = strat.fitness(cells[trackers[i].cellid]);
}
}
}
lock(stats.m);
append(stats.fitness_time, now() - start);
unlock(stats.m);
auto comp = [strat](CellTracker &a, CellTracker &b){
return strat.higher_fitness_is_better ? (a.score > b.score) : (a.score < b.score);
};
// 4. sort
start = now();
std::sort(&trackers[0], &trackers[trackers.len-1], comp);
lock(stats.m);
append(stats.sorting_time, now() - start);
append(stats.best_cells, cells[trackers[0].cellid]);
append(stats.best_cell_fitness, trackers[0].score);
append(stats.gen_time, now() - gen_start);
stats.gen++;
unlock(stats.m);
}
stats.done = true;
return 0;
}
template <class T> T run(Strategy<T> strat) {
Array<Stats<T>> stats = make_array<Stats<T>>(strat.num_threads);
Array<Thread> threads = make_array<Thread>(strat.num_threads);
Array<WorkerThreadArgs<T>> args = make_array<WorkerThreadArgs<T>>(strat.num_threads);
float best_global_score = strat.higher_fitness_is_better ? FLT_MIN : FLT_MAX;
T best_global_cell;
allow_all_processors();
set_affinity(0);
for (int i = 0; i < strat.num_threads; i++) {
stats[i] = {
.best_cells=make_dynarray<T>(strat.num_generations),
.best_cell_fitness=make_dynarray<float>(strat.num_generations),
.gen_time=make_dynarray<TimeSpan>(strat.num_generations),
.crossover_time=make_dynarray<TimeSpan>(strat.num_generations),
.mutate_time=make_dynarray<TimeSpan>(strat.num_generations),
.fitness_time=make_dynarray<TimeSpan>(strat.num_generations),
.sorting_time=make_dynarray<TimeSpan>(strat.num_generations),
.m=make_mutex()
};
Array<T> cells = make_array<T>(strat.num_threads*strat.num_cells_per_thread);
Array<CellTracker> trackers = make_array<CellTracker>(strat.num_cells_per_thread);
for (int i = 0; i < strat.num_cells_per_thread; i++) {
cells[i] = strat.make_default_cell();
trackers[i] = {0, i};
}
args[i].strat=strat;
args[i].cells=cells;
args[i].trackers=trackers;
args[i].stats=&stats[i];
args[i].best_global_score=&best_global_score;
args[i].best_global_cell=&best_global_cell;
args[i].m = make_mutex();
threads[i] = make_thread(worker<T>, &args[i], i+1);
}
// We are the stats thread
bool complete = false;
while (!complete) {
sleep(from_s(strat.stats_print_period_s));
log("**********************\n");
float g_avg_gen_time = 0;
float g_avg_crossover_time = 0;
float g_avg_mutate_time = 0;
float g_avg_fitness_time = 0;
float g_avg_sorting_time = 0;
float g_avg_overhead_time = 0;
float g_progress_per = 0;
float g_best_fitness = strat.higher_fitness_is_better ? FLT_MIN : FLT_MAX;
complete = true;
for (int i = 0; i < stats.len; i++) {
lock(stats[i].m);
complete &= stats[i].done;
int end = stats[i].gen_time.end-1;
float gen_time = to_s(stats[i].gen_time[end]);
float crossover_time = to_s(stats[i].crossover_time[end]);
float mutate_time = to_s(stats[i].mutate_time[end]);
float fitness_time = to_s(stats[i].fitness_time[end]);
float sorting_time = to_s(stats[i].sorting_time[end]);
float progress_per = static_cast<float>(stats[i].gen) / static_cast<float>(strat.num_generations) * 100;
float best_score = back(stats[i].best_cell_fitness);
float overhead = max(0, gen_time - (crossover_time + mutate_time + fitness_time + sorting_time));
float overhead_per = overhead / gen_time * 100;
g_avg_gen_time += gen_time;
g_avg_crossover_time += crossover_time;
g_avg_mutate_time += mutate_time;
g_avg_fitness_time += fitness_time;
g_avg_sorting_time += sorting_time;
g_progress_per += progress_per;
g_best_fitness = better(strat.higher_fitness_is_better, best_score, g_best_fitness);
g_avg_overhead_time += overhead;
log(thread_stat_format_str, i, stats[i].gen, strat.num_generations, best_score, overhead_per, gen_time, overhead, crossover_time, mutate_time, fitness_time, sorting_time);
unlock(stats[i].m);
}
g_avg_gen_time /= stats.len;
g_avg_crossover_time /= stats.len;
g_avg_mutate_time /= stats.len;
g_avg_fitness_time /= stats.len;
g_avg_sorting_time /= stats.len;
g_progress_per /= stats.len;
g_avg_overhead_time /= stats.len;
float g_avg_overhead_per = g_avg_overhead_time / g_avg_gen_time * 100;
log(global_stat_format_str, g_progress_per, g_best_fitness, g_avg_overhead_per, g_avg_gen_time, g_avg_overhead_time, g_avg_crossover_time, g_avg_mutate_time, g_avg_fitness_time, g_avg_sorting_time);
if (complete) break;
}
for (int i = 0; i < threads.len; i++) {
join(threads[i]);
}
T best_cell;
// TODO: bad
float best_score = strat.higher_fitness_is_better ? FLT_MIN : FLT_MAX;
for (int i = 0; i < stats.len; i++) {
float score = back(stats[i].best_cell_fitness);
if (strat.higher_fitness_is_better ? score > best_score : score < best_score) {
best_cell = back(stats[i].best_cells);
best_score = score;
}
}
return best_cell;
}
} // namespace genetic