Files
LivePlotter/src/main.cpp

248 lines
8.3 KiB
C++

#include <cstring>
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <glm/ext/matrix_clip_space.hpp>
#include <glm/ext/matrix_transform.hpp>
#include <glm/ext/vector_float3.hpp>
#include <glm/matrix.hpp>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <string>
#include <tuple>
#include "util.hpp"
#include "shaders.hpp"
#include "body.hpp"
#include "camera_poses.hpp"
static GLFWwindow* window;
static float width, height;
void framebuffer_size_callback(GLFWwindow* window, int w, int h) {
width = w;
height = h;
glViewport(0, 0, width, height);
}
void process_input() {
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
static bool stop = false;
static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
const float max_hp
= 10; // Number of scans (without a particular barcode) for which the sphere will still be visible
struct BarcodeRead {
char* name;
Body* b;
float hp;
};
static std::vector<BarcodeRead> camera_bodies; // I would use my array here, but was getting a linking error
void* process_cin(void* args) {
std::string line;
while (true) {
std::getline(std::cin, line);
Array<char*> words = split_str(line.c_str());
assert(words.len == 4);
printf("Received: %s, %s, %s, %s\n", words[0], words[1], words[2], words[3]); // echo for debugging
float x = atof(words[1]);
float y = atof(words[2]);
float z = atof(words[3]);
glm::vec3 new_loc = glm::vec3(x, y, z);
bool found_match = false;
pthread_mutex_lock(&lock);
for (int i = 0; i < camera_bodies.size(); i++) {
if (strcmp(words[0], camera_bodies[i].name) == 0 && camera_bodies[i].b) {
Body& b = *camera_bodies[i].b;
glm::vec4& transl = b.pose[3];
transl = 0.9f * transl + 0.1f * glm::vec4(new_loc, 1); // lp filter
int color_i = i + 1;
b.color = glm::vec4(color_i & 0x4, color_i & 0x2, color_i & 0x1, 1); // reset alpha to 1
b.pose = glm::translate(b.pose, glm::vec3(transl));
camera_bodies[i].hp = max_hp;
found_match = true;
} else if (camera_bodies[i].b) {
float& cur_hp = camera_bodies[i].hp;
if (cur_hp > 0)
cur_hp -= 1;
camera_bodies[i].b->color = glm::vec4(i & 0x4, i & 0x2, i & 0x1, cur_hp / max_hp);
}
}
if (!found_match) {
auto read = BarcodeRead { words[0], (Body*)NULL, max_hp };
camera_bodies.push_back(read);
}
pthread_mutex_unlock(&lock);
}
}
static bool mouse_pressed = false;
static bool scroll_pressed = false;
static double prev_cursor_x, prev_cursor_y;
static double theta = 0.0; // angle of camera trans vect wrt x-z plane
static double phi = glm::radians(270.0); // angle of camera trans vect wrt x-axis
static glm::vec3 focal_point = glm::vec3(0, 0, 500);
static glm::vec3 camera_loc = glm::vec3(0, 4000, 0);
static glm::vec3 up = glm::vec3(0, 1, 0);
static glm::mat4 world_to_camera = glm::lookAt(camera_loc, focal_point, up);
static void cursor_position_callback(GLFWwindow* window, double xpos, double ypos) {
float dx = (xpos - prev_cursor_x);
float dy = (ypos - prev_cursor_y);
glm::mat4 camera_to_world = glm::inverse(world_to_camera);
// These could be acquired via some cross products. Don't know if that's more efficient.
glm::vec4 strafe_x = camera_to_world[0];
glm::vec4 strafe_y = camera_to_world[1];
prev_cursor_x = xpos;
prev_cursor_y = ypos;
double len = glm::length(camera_loc - focal_point);
if (mouse_pressed) {
phi += glm::radians(dx * (360 / width)); // * glm::radians(360.0);
theta += glm::radians(dy * (360 / height)); // * glm::radians(360.0);
camera_loc.x = focal_point.x + (len * glm::cos(theta) * glm::cos(-phi));
camera_loc.y = focal_point.y + (len * glm::sin(theta));
camera_loc.z = focal_point.z + (-len * glm::cos(theta) * glm::sin(-phi));
}
if (scroll_pressed) {
glm::vec4 move_vec = glm::max((float)len, 20.0f) * (- strafe_x * (dx / 500) + strafe_y * (dy / 500));
focal_point += move_vec;
camera_loc += move_vec;
}
world_to_camera = glm::lookAt(camera_loc, focal_point, up);
}
void mouse_button_callback(GLFWwindow* window, int button, int action, int mods) {
if (button == GLFW_MOUSE_BUTTON_RIGHT) {
mouse_pressed = action == GLFW_PRESS;
}
if (button == GLFW_MOUSE_BUTTON_MIDDLE) {
scroll_pressed = action == GLFW_PRESS;
}
glfwGetCursorPos(window, &prev_cursor_x, &prev_cursor_y);
}
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset) {
glm::vec3 k = camera_loc - focal_point;
camera_loc -= k * (float)yoffset / 10.0f;
world_to_camera = glm::lookAt(camera_loc, focal_point, up);
}
bool glfw_setup() {
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
window = glfwCreateWindow(800, 800, "LivePlotter", NULL, NULL);
if (window == NULL) {
printf("Failed to create GLFW window\n");
glfwTerminate();
return false;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetCursorPosCallback(window, cursor_position_callback);
glfwSetMouseButtonCallback(window, mouse_button_callback);
glfwSetScrollCallback(window, scroll_callback);
cursor_position_callback(window, 0, 0);
return true;
}
int main() {
if (!glfw_setup())
return -1;
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {
printf("Failed to initialize GLAD\n");
return -1;
}
glViewport(0, 0, 800, 800);
width = 800;
height = 800;
const char* vertex_filepath = "src/shaders/vertex.glsl";
const char* fragment_filepath = "src/shaders/fragment.glsl";
uint shader;
if (!load_shader(&shader, vertex_filepath, fragment_filepath))
return -1;
//glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT); // Write to back buffer
glfwSwapBuffers(window); // front buffer is now back
glClear(GL_COLOR_BUFFER_BIT); // Write to back buffer again (former front buf)
// glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
// set_uniform(shader, "color", glm::vec4 { sin(time), sin(time + glm::radians(45.0f)), sin(time +
// glm::radians(90.0f)), 1.0 } / 2.0f); time = glfwGetTime();
glDisable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glm::mat4 projection_t = glm::infinitePerspective(glm::radians(45.0f), (float)width / (float)height, 0.1f);
pthread_t thread_id;
pthread_create(&thread_id, NULL, process_cin, NULL);
Array<Body> camera_pose_axes = { NULL, 0 };
if (!parse_poses(&camera_pose_axes, "poses.csv")) {
return -1;
}
for (int i = 0; i < camera_pose_axes.len; i++) {
camera_pose_axes[i].shader = shader;
}
/*Body b;
create_new_sphere(&b);
b.pose = glm::mat4(1);
b.color = glm::vec4(1, 1, 1, 1);
b.shader = shader;*/
while (!glfwWindowShouldClose(window)) {
process_input();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
set_uniform(shader, "camera_t", world_to_camera);
set_uniform(shader, "projection_t", projection_t);
//draw_body(b);
for (int i = 0; i < camera_pose_axes.len; i++) {
draw_body(camera_pose_axes[i]);
}
if (pthread_mutex_trylock(&lock) == 0) {
for (int i = 0; i < camera_bodies.size(); i++) {
if (!camera_bodies[i].b) {
Body* b = (Body*)malloc(sizeof(Body));
create_new_sphere(b);
b->color = glm::vec4((i+1) & 0x4, (i+1) & 0x2, (i+1) & 0x1, max_hp);
b->scale = 20;
camera_bodies[i].b = b;
}
draw_body(*camera_bodies[i].b);
}
pthread_mutex_unlock(&lock);
}
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwTerminate();
return 0;
}